CMR Institute of Technology Department of Computer Science & Engineering IAT 1

14SCS23 – Advanced Algorithms

- **1. a)Define and explain the various asymptotic notations with related graphs and examples. Definition 1, each 3**
- Running time of an algorithm as a function of input size n **for large n**.
- Expressed using only the **highest-order term** in the expression for the exact running time. o Instead of exact running time, say $Q(n^2)$.
- Describes behavior of function in the limit.
- Written using **Asymptotic Notation**.
- \bullet **Q**, *O*, **W**, *o*, **w**
- Defined for functions over the natural numbers.
	- **Ex**: $f(n) = Q(n^2)$.
	- **Describes how** $f(n)$ **grows in comparison to** n^2 **.**
- Define a *set* of functions; in practice used to compare two function sizes.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

-notation

 $D(g(n)) = {f(n): 5}$ positive constants c_1, c_2 , and n_0 , such that $3n \int n_0$, $0 \nmid c_1 g(n) \nmid f(n) \nmid f(n)$

 Ω -notation $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0 \text{, such that } \forall n \geq n_0 \text{, we have } 0 \leq cg(n) \leq f(n)\}$

O-notation $\overline{O(g(n))} = \{f(n): 5 \text{ positive constants } c \text{ and } n_0 \text{, such that } 3n \mid n_0 \text{, we have } 0 \nmid f(n) \nmid c g(n) \}$

Q3.AIllustrate the aggregate analysis of amortized analysis on the operation INCREMENT in a binary counter. (definition 2, explanation-6, derivation 2)

2u:2	Investentially a binary Counter.
\rightarrow Implement a k-bit binary Counter, that counts	
upward from 0.	\rightarrow An array A L0.... K-TJ of bits, where A. Length
as the complex.	\rightarrow x = binary number; lowest-order bits = A L0J;
highest = order bit = A [k-1]	\rightarrow x = 2
\rightarrow x = binary number; lowest-order bits = A L0J;	
highest = order bit = A [k-1]	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2
highest = 0	\rightarrow x = 2

The single execution of INCREM (LA) in the worst care would appear on rati -> so, a signale of a Increment operations on 1 initially 2ero counter takes time OCAK) in the Counter Value AETJ AEGJ AEGJ AEGJ AEGJ AEGJ AEGJAEOJ Tobal unter value du 0 bours et 0 0 0 0 0 0 $0 940 0 0 0 0$ \overline{O} \overline{O} \mathcal{O} 今 O 0 8 0 0 $\mathbf{1}$ 10 0 000 0000 0000 1 8 \circ Color Danortreed Last 0 0 0 0 0 0 0 0 0 0 1 0 1 0 10 0 0 $\n *M*\n$ on loteno ladol 0 0 $0 0 14$ \overline{O} $0 115$ \mathcal{O} 10 \mathcal{O} \overline{O} $\overline{\mathcal{O}}$ 00 Mand 2 $1 - 1$ 10 $\begin{array}{c|cc} \hline & \circ & \circ & \circ \end{array}$ Ol # of bits flipped) \mathcal{O} $0 - 0$ $-\mathcal{O}$ $\overline{1}$ \circ \mathcal{O} 00 \mathcal{O} (2,2) nin A PAIT LIND \mathcal{O} $0 0$ \circ $\begin{array}{ccc} 0 & 1 & 1 \end{array}$ \mathcal{O} \overline{O} \overline{O} 0 \mathcal{O} $B1$ \circ \mathcal{D} \circ \circ Ω

2. a) the a recursion tree to determine a good asymptotic upper bound on the recurrence relation

$$
T(n) = 2T \left(\frac{n}{2}\right) + n.
$$

 \sim 1.

$$
\frac{n}{4} \frac{1}{4} \frac{1}{4} \frac{n}{4} \frac{n}{4}
$$

\n
$$
\frac{n}{2} \frac{n}{4} \frac{n}{4} \frac{n}{4}
$$

\n
$$
\frac{n}{2} \frac{n}{2} \frac{n}{4} \frac{n}{4}
$$

\n
$$
\frac{n}{2} \frac{n}{4} \frac{n}{4} \frac{n}{4} \frac{n}{4}
$$

\n
$$
\frac{n}{2} \frac{n}{4} \frac{n}{4} \frac{n}{4} \frac{n}{4} \frac{n}{4}
$$

\n
$$
\frac{n}{2} \frac{n}{4} \frac{n}{4}
$$

\n
$$
\frac{n}{2} \frac{n}{4} \frac{n}{
$$

2. c) Write the johnson's algorithm to solve all-pairs shortest path problem for sparse graphs.

Johnson's algorithm

form G' run BELLMAN-FORD on G' to compute $\delta(s, v)$ for all $v \in V$ if BELLMAN-FORD returns FALSE then G has a negative-weight cycle else compute $\widehat{w}(u, v) = w(u, v) + \delta(s, u) - \delta(s, v)$ for all $(u, v) \in E$ for each vertex $u \in V$ do run Dijkstra's algorithm from u using weight function \widehat{w} to compute $\widehat{\delta}(u, v)$ for all $v \in V$ for each vertex $v \in V$ $\text{do} \triangleright$ Compute entry d_{uv} in matrix D $d_{uv} = \hat{\delta}(u, v) + \delta(s, v) - \delta(s, u)$ because if p is a path $u \sim v$, then $\widehat{w}(p) = w(p) + h(u) - h(v)$

to find schoolest paths between all paiss of vertices in the $L[0]$ $graph$ of q' . $a1$ (b). -3 Johnsons ag: Johnson (G, ω) Compute bi , where bi' . $v = bi \vee v$ [sig $G'. E = G.EV$ [$CS, PJ; V \in G.V$], and $W(S,u) = 0$ for all $u \in G.v$ if BELLOMN-FORD (G', M, S) = = FALSE print " the input graph contains a regative -weight $cyde^{\prime\prime}$ else for each vertex $u \in G'$. set $h(K)$ to the value of $f(S, V)$ computed by the Bellman ford algorithm for each edge (u, v) E G'E $\hat{u}(u,v)$ = $w(u,v)+h(u)$ - $h(v)$ let P = (dux) be a new 1 x1 metrix for each vertex it & G.V ran Diskstra (Li, 2, u) to compute à (U, U) for all vection for each vertex VE G.V $duv = \hat{S}(u, v) + h(v) - h(v)$ return D.

 $\odot)$

b) Write Johnsons algorithms for sparse graphs. Use Same

 $SO,$

 $\left(\overline{A}\right)$ 2 a) pefine mouster method. Use master method to give tight asymptotic bounds for the following recurrences. [7] i) $1(n) = 4T(n|a) + n^2$. (ii) $T(n) = 4T(n|a) + n^2$.

 304

$$
f(n) = 4 f(n |d) + n^{2}
$$
\n
\n... $n^{2} = (9(n^{2}/9 n))$
\n
\n
$$
f(n) = 4 f(n |d) + n^{3}
$$
\n
\n... $n^{3} = 4 (n^{2} + 6)$ and
\n
$$
4 (n |d)^{3} = \frac{1}{2n^{3}} \leq (n^{3}, j) \leq L
$$
\n
\n
\n
$$
f(n) = (9(n^{3}))
$$

- b) α fine $0, \theta, \Omega$ potation. [3]. $\frac{1}{2}$ 0 -notation: The function $f^{(n)} = O(g^{(n)}, \frac{1}{N})$, there
	- exist positive constant c and no such that,

$$
f^{(n)} \subseteq C \land g^{(n)} \quad \forall n, n \geq n_0
$$

Soln

DAG-SHORTEST-PATHS (G, W, S) topologically sort the vertices of G INITIALIZE-SINGLE-SOURCE (G1,S) for each vertex is, taken in topologically sorted order for each vertex v & G. Adi [u] RELAX (u, u, w)

 $\frac{1}{20}$

 F ORD - FULLERSON - WETHOD (LA, S, E)

initialize flow t to D while there exists an arguetating path p in the residual augment flow & along p retwork ln . return &