CMR

INSTITUTE OF
TECHNOLOGY
USN
Internal Assessment Test - 1
Sub: ' WEB SERVICES solutions Code: 16SCS254
Date: | 27/03/2017 Duration: 90 mins | Max Marks: 50 Sem: 11 Branch: |[CSE-MTECH

1. Define middleware? Explain the different types of middleware? (5)

Middleware : Middleware is connectivity software that provides a mechanism for processes to
interact with other processes running on multiple networked machines.

Middleware Application Programming Interfaces provide a more functional set of
capabilities than the OS and network services provide on their own

o Hides complexity and heterogeneity of distributed system
o Bridges gap between low-level OS communications and programming language abstractions
s Layer between OS and distributed applications

Distributed Applications

Middleware

Operating System Comms

Network

Type of Middleware:
= There are four basic types of middleware
@ Transaction Processing Monitor (TP)

Object monitors
o Remote Procedure Call (RPC)
o Message-Oriented Middleware (MOM)

Message broker
o Object Request Broker (ORB)

Transaction Processing Monitor (TP)

TP can provide the following
— control transaction applications
— provide business logicfrules

—database updates

Transaction Processing Rou

- Request

Transaction Processing Architecture

Remote Procedure call(RPC)

]
vl

Lt R R - B I R
e H G BH W H o

= RPC is a client/server mechanism that allows the
program to be distributed across multiple platforms.
RPC's reduce the complexity of a systemn that span
multiple OS and network protocols by OS and network
interface details from the programmer

b) Write a short note on Message-Oriented Middleware (5)

« Asynchronous communication is in the heart of Message-Oriented
Middleware (MOM)
- RPC also had an extension to cope with asynchronous calls
— TP Monitors introduced queues to implement message-based interactions.

« Modern MOM is descendent of queuing systems found in TP Monitors

— Used for batch processing but later switched to cope with the interoperability issues in
the context of multiple heterogeneous systems and programming languages.

+ Major approach to integrate information systems and applications today
is by relying on MOM

+ Current solutions in the area include IBM Web Sphere MQ, Microsoft
Message Queuing (MSQM), ... but also CORBA has it's service.

« Asynchronous communication is in the heart of Message-Oriented
Middleware (MOM)
— RPC also had an extension to cope with asynchronous calls
— TP Monitors introduced queues to implement message-based interactions.

* Modern MOM is descendent of queuing systems found in TP Monitors

— Used for batch processing but later switched to cope with the interoperability issues in
the context of multiple heterogeneous systems and programming languages.

« Major approach to integrate information systems and applications today
is by relying on MOM

+ Current solutions in the area include IBM Web Sphere MQ, Microsoft
Message Queuing (MSQM), ... but also CORBA has it's service.

« Asynchronous communication is in the heart of Message-Oriented
Middleware (MOM)

- RPC also had an extension to cope with asynchronous calls
— TP Monitors introduced queues to implement message-based interactions.

« Modern MOM is descendent of queuing systems found in TP Monitors

— Used for batch processing but later switched to cope with the interoperability issues in
the context of multiple heterogeneous systems and programming languages.

+ Major approach to integrate information systems and applications today
is by relying on MOM

+ Current solutions in the area include IBM Web Sphere MQ, Microsoft
Message Queuing (MSQM), ... but also CORBA has it's service.

Asynchronous interaction
*Client and server are only loosely coupled
*Messages are queued
*Good for application integration
Support for reliable delivery service
*Keep queues in persistent storage
Processing of messages by intermediate message server(s)
*May do filtering, transforming, logging, ...
*Networks of message servers
Natural for database integration

A M A

T P

AR N|R|O]|P

P O R M E A L
L A E M

M| T | W |

W 5 c

E ?F" 'g o P A A

A R L8] T

| P N . k | R | P |

: R1K MOM Provider 1o

o | T .

N
Application A Apglli_catti:én B

(Client A) (Client B)

It refers to an interaction paradigm where clients and service providers
communicate by exchanging messages.

Message is a structured data set characterized by its type and a set of
pairs consisting of names and values.

Client and service provider must agree on the set of message types
exchanged during the communication.

MOM supports message-based interoperability.

Difference between client and server is here blurred.

« Messages sent by a MOM client are placed into a queue.

* Queue is identified by a name and possibly bound to a specific intended
recipient.

+ Recipient picks up and processes the message when suitable.

« More robust on failures, flexible in terms of performance optimizations:
— (Queues may be shared between applications.
- Messages may have priorities.

[client application } ‘ guatation toal
J
_] queved
—
H__,mmm: H_;": = mecspes
quetie

| T T \"“Mess-:.gt-{.‘lrie.n’rad
prdesatinns et iddloware (MOM)

2. Describe how the Binding happen in RPC along with its Working(10)

Remote Procedure Call (RPC) is a high-level model for client-server communication.

= RPC enables clients to communicate with servers by calling procedures in a similar way to the
conventional use of procedure calls in high-level languages.

= Examples: File service, Authentication service.

RPC Model

= Fundamental idea: —

o Server process exports an interface of procedures or functions that can be called by client
programs similar to library API, class definitions, etc.

= (Clients make local procedure/function calls

o As if directly linked with the server process

@ Under the covers, procedure/function call is converted into a message exchange with remote
server process

Ordinary procedure/function call
count = read(fd, buf, nbytes)

‘ i sarver

procedure call _ | procedure

) -) T dispatcher

client stub
bind
marshal
serialize

FIGURE RPC-working

Solution — a pair of Stubs

o

o

o

Client-side stub

Looks like local server function

Same interface as local function

Bundles arguments into message, sends to server-side stub
Waits for reply, un-bundles results

returns

Server-side stub

Looks like local client function to server

Listens on a socket for message from client stub
Un-bundles arguments to local variables

Makes a local function call to server

Bundles result into reply message to client stub

Developing distributed applications with RPC

RPC Model
A server defines the service interface using an interface definition language (1DL)
= the IDL specifies the names, parameaters, and types for all client-callable server procedures

= A stub compiler reads the IDL declarations and produces two stub functions for each server function
= Server-side and client-side
= linking:—
= Server programmer implements the service’s functions and links with the server-side stubs
= Client programmer implements the client program and links it with client-side stubs
= (peration—
= Stubs manage all of the details of remote communication between client and server
= A client-side stubris a function that looks to the client as if it were a callable server function
= lLe., same AP as the server's implementjtion of the function

= A server-side stub looks like a caller to the server
= lLe, like a hunk of code invoking the server function
= The client program thinks it's invoking the server
= putit's calling into the client-side stub
= The server program thinks it's called by the client
= butit's really called by the server-side stub
= The stubs send messages to each other to make the RPC happen transparently (almost!)
= A client-side stub is a function that looks to the client as if it were a callable server function
= Le, same APl as the server's implementation of the function
= A server-side stub looks like a caller to the server
= lLe, like a hunk of code invoking the server function
= The client program thinks it's invoking the server
= putit's calling into the client-side stub
= The server program thinks it's called by the client
= putit's really called by the server-side stub
= The stubs send messages to each other to make the RPC happen transparently (almost!)

MMarshalling Arguments
= Marshalling is the packing of function parameters into a message packet

= The RPC stubs call type-specific functions to marshal or unmarshal the parameters of an RPC
Client stub marshals the arguments into a message
Server stub unmarshais the arguments and uses them to invoke the senvice function
= onreturn:
the server stub marshals return values
the client stub unmarshals return values, and retumns to the client program

BDi Biudinea

RPC BINDING

Binding is the process of connecting the client to the server

@ the server, when it starts up, exports its interface

identifies itself to a network name server

tells RPC runtime that it is alive and ready to accept calls

o the client, before issuing any calls, imports the server

RPC runtime uses the name server to find the location of the server and establish a connection
= The import and export operations are explicit in the server and client programs

3. Describe Briefly about CORBA and ORB?(10)

Ans: Common Object Request Broker: An Object Broker is a middleware entity that matches up client
applications with target objects.

NA
T~ T

= L
< il -

] I.
4
Sexvice Jf];’& f\JHE Service

Eatablish

onnection

Remote Service

| Client | minn (object)

A target object is a software entity that provides some service to a client sofeware applicadon. It may be
located on the same machine as the client, or half a world away. The client doesn't need to know. It simply
tells the Object Broker (also known as Object Request Broker. or ORB)

RPC
FIGURE RPC-binding

client

procedure: call

dezerialize
7. receive

3. query for server
implementing
the procedure

&_ invoke procedure

. addrezz of server

name and directory service (binder)

Introduction to CORBA:
» The Object Management Group {OMG) was formed in 1989, Tts aims were:
= tomake better use of distributed systems
= {o use object-oriented programming
= fo allow objects in different programming languages to communicate with one another
= The object request broker (ORE) enables clients to invoke methods in a remote object
= CORBA is a specification of an architecture supporting this.
= CORBA1in 1990 and CORBA 2 in 1996.

w [

(PORTABLE) OBJECT ADAPTER (POA)

= Register class implementations

» Creates and destroys objects

= Handles method invokation

= Handles client authentication and access canfrol

OBJECT REQUEST BROKER (ORB)

= Communication infrastructure sending messages betwesn objects
= Communication type:

= GIOP (General Inter-ORE Protocol)

= JIOP (Internst Inter-ORB Protocol) {GIOP on TCR/IP)

Generic Architecture

Middleware

* Remote-object: object implementation resides in server’s address space

STUB

* Provides interface betwsen client object and ORB
= Marshalling: dient invocation

= Unmarshalling: server response

SKELETON
* Provides iterface between server object and ORB

* Unmarshaling: client invocation
= Marshaling: server resnonse

Object Request Broker (ORB)

= Communication infrastructure sending messages
between objects

= Communication type:
GIOP {(General Inter-ORB Protocol

INTERFACE DEFINITION LANGUAGE (IDL)
= Describes intarface
= language independent
= (Client and server platform independent

EXAMPLE OF CORBA SERVICES
= Namung: Keeps track of association befween object names and their reference. Allows ORB to locate referenced
objects

= Life Cycle: Handles the creation, -:oi:m.ng, mmmg, and delefion ol‘qects

Trader A “yellow pages” for objects Lets you find them by the services they provide

Event: Facilitates asynchronous communications through events

Concurrency: Manages locks so objects can share resources

Query: Locates objects by specified search criteria

T T

L BESR ETR e—

acilities"

) =) o | o | e | e | [

4. Explain the External Architecture of a web service argument with peer-to peer protocol
execution(10)

+ Case for the external middleware is not clear
— Who owns the middleware?
— Where to locate it?
— How to trust to the provided middleware services?

+ Two solutions to solve the problem:
1. Implement middleware as P2P system
= All participants cooperate to provide the services
= Reliability and trustworthiness is questionable (e.g., name and directory services)

2. Introduce intermediaries or brokers acting as necessary middleware
* Part of the middleware can reside at different locations

* Currently only name and directory services (UDDI) is standardized and
“used” in practice.

External Archifectare ol WEeD Servies : —"‘-”f

= Ca_;rpﬂny A (service reguaster) Company B (service provider)
[Web service client] [Web service]
Web services middleware 5. interact Web services middleware
(internal) (internal)
|I'
other tiers other tiers
2_ find 1. publish the service description
the abstraction
and \/
infrastructure —
pruuided by' the wa
registry are part
of the external
middleware

Company C (directory service provider)
Capyripks Sprimger Vierg Borlis Beideltery 2004 Figuresag.

+ But where are the other middleware features (transaction management
supported by TP monitors, services provided by CORBA)?

+ Centralized transaction broker is theoretically possible and technically
feasible but runs into various problems

— Standard way of running transactions accepted by everyone so that transactional
semantics is not violated.

— All participants trust the broker (highly improbable).

+ Alternative is to implement the transaction broker as a P2P system
— Each service requester has its own transaction manager.

— Functionality provided by this solution is a subset of the functionality offered by
conventional middleware systems.

Web Sendce Rrchitecturs arzmerted by Prarto-Peer prototo] estencjon s f__._,.-:—""

Company-A— | extornal middloware | Gompany B
“(zervice qu:'l'ﬂr]i {service provider)

i
]
]
i

i i

]

- i Web service

]

: | 1
internal J:“' mgmt et | internal
middleware || other protocal other protocal ||| middleware

: infrastructure infrastructure !

i i

other tiers I compasitian compasition ! other tiers

: engine engine i

, :

; :

i
| :
i

| : :

! 1

| |

: 1

]

: . oy e -

Capyright Sprimger Viorhy Berie Hodpitery 200 (iP@Ctory service provider) | Figureg.ay.

L e e e T e e e T

5. Explain about TP Monitors and Functionality of a TP Monitor (10)

Ans: The solution to this limitation is to make RPC calls transactional, that is, instead of providing plain
RPC, the system should provide TRPC

= Whatis TRPC?

@ same concept as RPC plus ...

o additional language constructs and run time support (additional services) to bundle several RPC calls
into an atomic unit

o usually, it also includes an interface to databases for making end-to-end transactions using the XA
standard (implementing 2 Phase Commit)

@ and anything else the vendor may find useful (transactional callbacks, high level locking, etc.)

Simplifying things quite a bit, one can say that, historically, TP-Monitors are RPC based systems
with transactional support. We have already seen an example of this:

Transactional RPC

O The himitations of RPC can be resolved chisiit
by making RPC calls transactional. In

practice, this means that they are
controlled by a 2PC protocol

O As before, an intermediate entity is
needed to run 2PC (the client and server
could do this themselves but it 1s neither
practical nor generic enough)

O This intermediate entity is usually called
a transaction manager (TM) and acts as
intermediary in all interactions between server
clients. servers, and resource managers

O When all the services needed to support
RPC. transactional RPC. and additional
features are added to the intermediate
layer. the result is a TP-Monitor

Q.
=
)
o
]
w
@

+ Concept of transaction is developed in the context of Database
Management Systems (DBMS).

+ Transaction represents a set of operations characterized by the so
called ACID properties.

+ TRPC provides a possibility to enforce ACID properties when dealing
with data distributed across multiple (and heterogeneous) systems.

+ Procedure calls enclosed within the transactional brackets are an
atomic unit of work.
— Beginning of Transaction (BOT) and End of Transaction (EOT) - RPC call.
— Infrastructure guarantees their atomicity.

+ Transaction Management module is responsible to coordinate
interactions between clients and servers.

Thn-' design cycle with a TP- Mllnlfllr

|:||:1'ir||:th|: SEMVic
irnEIr:rnent and describe them
in DL
specify which services are
transactional
use an IDL compiler to generate
the client and server stubs
xecution requires a bit more
- _— _| "'|rll e rn'.«'u |r|1'--ran tion is no
Server 3 (inventory)

Mew_product Place_order L nal services maintain
ormation and call
Lookup_product Cancel_order
Delete_product Update_inventory

Update_product Check_inventory stubs needto support more
infi e transaction id
and call co L
|_|_|r|||:l||-' call hierarchies are

rpically implemented with a TP-
hinrutnr and not with plain RPC

6.Explain the Two Facets of Web Services Architecture ?(10)

Ans: web services: A web service is a collection of open protocols and standards used for exchanging
data between applications or systems. Software applications written in various programming languages
and running on various platforms can use web services to exchange data over computer networks like the
Internet in a manner similar to inter-process communication on a single computer. This interoperability
(e.g., between Java and Python, or Windows and Linux applications) is due to the use of open
standardsThe Two Faces of Web Service Architectures:

+ Web services as a way to expose internal operations of a company
— System receives requests through the Web and passes them to the underlying IT
system.
— The problems are analogous to those encountered in conventional middleware.

— This is internal middleware for Web services (term internal architecture is used to refer
to organization and structure of the internal middleware).

+ Web services as a way to integrate systems across the Internet.
— Middleware infrastructure is needed to integrate different Web services.

— This is external middleware for Web services (term external architecture is used to
refer to organization and structure of the external middleware).

— External architecture has three components

- Centralized brokers — message routing and providing support for interactions (logging,
transactional guaranties, name and directory services, etc).

- Protocol infrastructure — coordinating interactions between Web services in distributed
settings.
- Service composition infrastructure — definition and execution of composite services.

T facetn of We't' 52 rvice s L'L.':r:t::tu.':s_ _,a—ﬁ""‘FF .
P = T —Company D (client)
Company A (provider)

Web service 3

(Web service interface ﬂ]
L.du:ce:s'l'n internal systems J\

architestur Wek
internal e service
drlchih:'l'ur'a
I middleware | mﬂﬂi‘f
[mwml] Web Web
service service [service][service]

oyt Sprimger Vierk g Bl Fidclbory 200 Company B (provider) Figure 5.10.

External Architecture

+ Case for the external middleware is not clear
— Who owns the middleware?
— Where to locate it?
— How to trust to the provided middleware services?

+ Two solutions to solve the problem:
1. Implement middleware as P2P system
= All participants cooperate to provide the services
= Reliability and trustworthiness is questionable (e g., name and directory services)

2. Introduce intermediaries or brokers acting as necessary middleware
- Part of the middleware can reside at different locations

+ Currently only name and directory services (UDDI) is standardized and
“‘used” in practice.

Exteral Architectare ol WEeD Servites — ———— - ’—-“"f

= C;;pnﬂy A (service requester) Company B {service provider)
[Woeb service client] [Web zervice]
Web services middleware 5. interact Web services middleware
(internal) (internal)
’ !
other tiers other tiers
2. find 1. publish the service description
the abstraction
and \/
infrastructure =
registry are part
of the external
middleware

Company C (directery service provider)
Capyright Sprisper Virhy Berlin HeSdeftery 200 _Eigu.re_.-,a;.

+ But where are the other middleware features (transaction management
supported by TP monitors, services provided by CORBA)?

+ Centralized transaction broker is theoretically possible and technically
feasible but runs into various problems
— Standard way of running transactions accepted by everyone so that transactional

semantics is not violated.

— All participants trust the broker (highly improbable).

+ Alternative is to implement the transaction broker as a P2P system
— Each service requester has its own transaction manager.
— Functionality provided by this solution is a subset of the functionality offered by

conventional middleware systems.

Web Sendce Rrchitecturs arzmerted by Prarto-Peer prototo] estencjon s

Company-A— | externalmiddiewars —
“(service qu:'l'ﬂr]i

Company B

(service provider)

Web service

transaction fransaction
mgmt mgmt
ather protocol ather protocol
infrastructure infrastructure
compasition campasitian
engine engine

other tiers

|

internal
middleware

other tiers

H:

Company C

Capyright Sprimger Viorhy Berie Hodpitery 200 (iP@Ctory service provider)
L

______________________________r________

!
i
i
i
i
1
i
I
i
|
i
i
i
I
]
i
|
i
i
i
1
i
I
i
|
i
|
[}
i
|
)
|
i
i
1
)
i
|
:
| .
! Figureg.ay.

7.a) Explain CORBA Encapsulation with a Dynamic Service Selection and Invocation (5)
CORBA allows client applications to dynamically discover new objects, retrieve their
interfaces, and construct invocations of this object on the fly, even if no stub has been previously

generated and linked to the client. This capability is based on two components: the inferface
repository and the dynamic invocation interface. The interface repository stores IDL definitions
for all the objects known to the ORB. Applications can access the repository to browse, edit, or
delete IDL interfaces. The dynamic invocation interface provides operations such as getinterface
and createrequest that can be used by clients to browse the repository and dynamically construct
the method invocation based on the newly discovered interface.

Constructing dynamic invocations is in fact very difficult. One problem is that, to search
for services, the client object must understand the meaning of the service properties, which in
turn requires a shared ontology among clients and service providers. Furthermore, if the client
has not been specifically implemented to interact with a certain service, it is difficult that it is
able to figure out what the operations of the newly discovered service do, what is the exact
meaning of their parameters, and in what order they should be invoked to obtain the desired
functionality.

IDL of service
T e g prokiis el
float 4 productId, in leng
quartity]

application ohject application object epplication object
(client) (client) | : (service provider)

Dynamic Imoo:lﬁm Interface | | I
Object Request Broker

!
e

Fig. 2.10. IDL specifications are compiled into skeletons on the server side and into
stubs on the client side

B. Explain about 2Phase Commit protocol(2PC). (5)

2PC is the standard mechanism for guaranteeing atomicity in distributed information
systems. In 2PC, the transaction manager executes the commit in two phases: in the first phase, it
contacts each server involved in the transaction by sending a prepare to commit message, asking
whether the server is ready to execute a commit. If the server successfully completed the
procedure invoked by the TRPC, it answers that it is ready to commit. By doing this, the server

guarantees that it will be able to commit the procedure even if failures occur. If the server could
not complete the TRPC, it replies abort. In the second phase, the transaction manager examines
all the replies obtained and, if all of them are ready to commit, it then instructs each server to
commit the changes performed as part of the invoked procedure. If at least one resource manager
replied abort (or failed to reply within a specified time limit), then the transaction manager
requests all servers to abort the transaction.

Fault tolerance in 2PC is achieved through logging (writing the
state of the protocol to persistent storage). By consulting such log entries, it is possible to
reconstruct the situation before a failure occurred and recover the system. What is logged and
when depends on the flavor of 2PC used (presumed nothing, presumed abort, presumed commit,
) but it is an important factor in terms of performance, since it must be done for each transaction
executed and since logging implies writing to the disk (which is a time-consuming operation).
2PC may block a transaction if the coordinator fails after sending the prepare to commit
messages but before sending a commit message to all participants.

