

1. Define middleware? Explain the different types of middleware? (5)

Middleware : Middleware is connectivity software that provides a mechanism for processes to

interact with other processes running on multiple networked machines.

Middleware Application Programming Interfaces provide a more functional set of

capabilities than the OS and network services provide on their own

Hides complexity and heterogeneity of distributed system
Bridges gap between low-level OS communications and programming language abstractions

Layer between OS and distributed applications

Type of Middleware:

There are four basic types of middleware
Transaction Processing Monitor (TP)

Object monitors

Remote Procedure Call (RPC)
Message-Oriented Middleware (MOM)

Message broker

Object Request Broker (ORB)

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assessment Test - I

 Sub: WEB SERVICES solutions Code: 16SCS254

Date: 27 / 03 / 2017 Duration: 90 mins Max Marks: 50 Sem: II Branch: CSE-MTECH

b) Write a short note on Message-Oriented Middleware (5)

Asynchronous interaction

 •Client and server are only loosely coupled

 •Messages are queued

 •Good for application integration

Support for reliable delivery service

 •Keep queues in persistent storage

Processing of messages by intermediate message server(s)

 •May do filtering, transforming, logging, …

 •Networks of message servers

Natural for database integration

2. Describe how the Binding happen in RPC along with its Working(10)

Remote Procedure Call (RPC) is a high-level model for client-server communication.

RPC enables clients to communicate with servers by calling procedures in a similar way to the
conventional use of procedure calls in high-level languages.
Examples: File service, Authentication service.

RPC Model

Fundamental idea: –
Server process exports an interface of procedures or functions that can be called by client
programs similar to library API, class definitions, etc.
Clients make local procedure/function calls
As if directly linked with the server process
Under the covers, procedure/function call is converted into a message exchange with remote
server process

Ordinary procedure/function call

count = read(fd, buf, nbytes)

Solution — a pair of Stubs

Client-side stub
Looks like local server function
Same interface as local function
Bundles arguments into message, sends to server-side stub
Waits for reply, un-bundles results
returns
Server-side stub
Looks like local client function to server
Listens on a socket for message from client stub
Un-bundles arguments to local variables
Makes a local function call to server
Bundles result into reply message to client stub

RPC BINDING
Binding is the process of connecting the client to the server
the server, when it starts up, exports its interface
identifies itself to a network name server
tells RPC runtime that it is alive and ready to accept calls
the client, before issuing any calls, imports the server
RPC runtime uses the name server to find the location of the server and establish a connection
The import and export operations are explicit in the server and client programs

3. Describe Briefly about CORBA and ORB?(10)

4. Explain the External Architecture of a web service argument with peer-to peer protocol

execution(10)

5. Explain about TP Monitors and Functionality of a TP Monitor (10)

Ans: The solution to this limitation is to make RPC calls transactional, that is, instead of providing plain
RPC, the system should provide TRPC
What is TRPC?
same concept as RPC plus …
additional language constructs and run time support (additional services) to bundle several RPC calls
into an atomic unit
usually, it also includes an interface to databases for making end-to-end transactions using the XA
standard (implementing 2 Phase Commit)

and anything else the vendor may find useful (transactional callbacks, high level locking, etc.)

Simplifying things quite a bit, one can say that, historically, TP-Monitors are RPC based systems

with transactional support. We have already seen an example of this:

6.Explain the Two Facets of Web Services Architecture ?(10)

 Ans: web services: A web service is a collection of open protocols and standards used for exchanging

data between applications or systems. Software applications written in various programming languages
and running on various platforms can use web services to exchange data over computer networks like the
Internet in a manner similar to inter-process communication on a single computer. This interoperability
(e.g., between Java and Python, or Windows and Linux applications) is due to the use of open

standardsThe Two Faces of Web Service Architectures:

External Architecture

7.a) Explain CORBA Encapsulation with a Dynamic Service Selection and Invocation (5)

CORBA allows client applications to dynamically discover new objects, retrieve their

interfaces, and construct invocations of this object on the fly, even if no stub has been previously

generated and linked to the client. This capability is based on two components: the interface

repository and the dynamic invocation interface. The interface repository stores IDL definitions

for all the objects known to the ORB. Applications can access the repository to browse, edit, or

delete IDL interfaces. The dynamic invocation interface provides operations such as getinterface

and createrequest that can be used by clients to browse the repository and dynamically construct

the method invocation based on the newly discovered interface.

Constructing dynamic invocations is in fact very difficult. One problem is that, to search

for services, the client object must understand the meaning of the service properties, which in

turn requires a shared ontology among clients and service providers. Furthermore, if the client

has not been specifically implemented to interact with a certain service, it is difficult that it is

able to figure out what the operations of the newly discovered service do, what is the exact

meaning of their parameters, and in what order they should be invoked to obtain the desired

functionality.

B. Explain about 2Phase Commit protocol(2PC). (5)

 2PC is the standard mechanism for guaranteeing atomicity in distributed information

systems. In 2PC, the transaction manager executes the commit in two phases: in the first phase, it

contacts each server involved in the transaction by sending a prepare to commit message, asking

whether the server is ready to execute a commit. If the server successfully completed the

procedure invoked by the TRPC, it answers that it is ready to commit. By doing this, the server

guarantees that it will be able to commit the procedure even if failures occur. If the server could

not complete the TRPC, it replies abort. In the second phase, the transaction manager examines

all the replies obtained and, if all of them are ready to commit, it then instructs each server to

commit the changes performed as part of the invoked procedure. If at least one resource manager

replied abort (or failed to reply within a specified time limit), then the transaction manager

requests all servers to abort the transaction.

 Fault tolerance in 2PC is achieved through logging (writing the

state of the protocol to persistent storage). By consulting such log entries, it is possible to

reconstruct the situation before a failure occurred and recover the system. What is logged and

when depends on the flavor of 2PC used (presumed nothing, presumed abort, presumed commit,

) but it is an important factor in terms of performance, since it must be done for each transaction

executed and since logging implies writing to the disk (which is a time-consuming operation).

2PC may block a transaction if the coordinator fails after sending the prepare to commit

messages but before sending a commit message to all participants.

