CMR
INSTITUTE OF
TECHNOLOGY

		 	3		
	II.	1 1	3 [1 1
TIONE	l l	1 1	i i		F 1
USIN	l l	1 1	1 1		l 1
COL	l l	1 1	1 1	1 1	1 1

Internal Assessment Test II

Sub	b ENGINEERING MATHEMATICS IV (REG) Code					15MAT41					
Date	08 / 05 / 2017 Duration 90 mins Max Marks 50 Sem IV Branch						E E	EC D, EE A,B			
0	Question 1 is compulsory. Answer any SIX questions from the rest.						Marks	Ol	BE		
•			REGUL				,			CO	RBT
1. D	Derive the mean and variance of binomial distribution.									401.4	L2
T 2. p	The number of telephone lines busy at an instant of time is a binomial variate with probability 0.1. If 10 lines are chosen at random, what is the probability that								07	401.4	L3
The probability that a newsreader commits no mistake in reading the news is $\frac{1}{e^3}$. Find the probability that, on a particular news broadcast, he commits								s $\frac{1}{e^3}$.	07	401.4	L3
I 4. 6	a) only 2 mistakes b) more than 3 mistakes c) at most 3 mistakes. In a normal distribution 31% of the items are under 45 and 8% of the items are over 64. Find the mean and standard deviation of the distribution, given A(0.5)=0.19 A(1.4)=0.42							are over 5)=0.19,	07	401.4	L3
7	The pdf of a continuon. Also find the mea	ous random va m, variance an	riate x is t	given by $p(x)$ deviation of	$ke^{- x }$ the dist	$\frac{1}{2}$, $-\infty < \infty$	€ < ∞ I.	. Find	07	401.4	L3

	-	Ī				1 1
T T (3.3.)		l	1			1 1
I IN N		[1 1
ODIT		ŧ				1
		§		 		

CMR INSTITUTE OF TECHNOLOGY W.

Internal Assessment Test II

Sub	ENGINEERING MATHEMATICS IV (REG) Code			15MA′	Γ41						
	08 / 05 / 2017 Duration 90 mins Max Marks 50 Sem IV Branch		E	EC D, EE A,B							
	is compulsory.	Answer any S	IX question	ns from the rest	•				Marks	O	BE
			REGUL							СО	RBT
Derive the	mean and vari	ance of binon	nial distrib	ution.					08	401.4	L2
The num probability line is but	ber of telepho ty 0.1. If 10 sy b) all line t 2 lines are b	one lines bus lines are chos s are busy c	sy at an ir osen at ra	nstant of time ndom, what i	s the p	inomial orobabili	varia ty tha	te, with at a) no	07	401.4	L3
The prob	ability that a probability to b) more than	newsreader that, on a p	articular	news broadca					.07	401.4	L3
In a norn	nal distribution I the mean a	n 31% of th	e items aı	e under 45 ar	nd 8% Ibution	of the it, given	ems a	are over 5)=0.19,		401.4	L3
The pdf of	of a continuou	ıs random va variance an	riate x is a	given by $p(x)$ I deviation of	ke^{-1} the dis	$ x $, $-\infty < 1$ stribution	x < ∞ 1	. Find	07	401.4	L3

6.	The range of a random variable $X=\{1,2,3,\}$ and the probabilities of X are such that $P(X=k)=\frac{\lambda^k}{k!}, k=1,2,3,$ Find the value of λ and $P(0 < X < 3)$	07	401.4	L3
7.	The average daily turnout in a medical store is Rs.10000 and the net profit is 8%. If the turnout has an exponential distribution, find the probability that the net profit will exceed Rs.3000 each on two consecutive days.	. 07 .,	401.4	L3
8.	A fair coin is tossed thrice. The random variables X and Y are defined as follows: X=0 or 1 accordingly as head or tail occurs in the first toss; Y = Number of heads. a) Determine the marginal distributions of X and Y. b) Determine the joint distribution of X and Y c) Obtain the expectations of X, Y and XY. Also find standard deviations of X and Y. d) Compute covariance and correlation of X and Y.	07	401.4	L3
9.	Each year a man trades his car for a new car in 3 brands of the popular company Maruthi Udyog Limited. If he has a <i>Standard</i> he trades it for <i>Zen</i> . If he has a <i>Zen</i> , he trades for <i>Esteem</i> . If has an <i>Esteem</i> , he is just likely to trade for a <i>new Esteem</i> or	07	401.6	L4

6.	The range of a random variable $X = \{1,2,3,\}$ and the probabilities of X are such that $P(X = k) = \frac{\lambda^k}{k!}, k = 1,2,3,$ Find the value of λ and $P(0 < X < 3)$	07	401.4	L3
7.	The average daily turnout in a medical store is Rs.10000 and the net profit is 8%. If the turnout has an exponential distribution, find the probability that the net profit will exceed Rs.3000 each on two consecutive days.	07	401.4	L3
8.	A fair coin is tossed thrice. The random variables X and Y are defined as follows: X= 0 or 1 accordingly as head or tail occurs in the first toss. Y = number of heads. a) Determine the marginal distributions of X and Y. b) Determine the joint distribution of X and Y c) Obtain the expectations of X, Y, XY. Also find standard deviations of X and Y. d) Compute covariance and correlation of X and Y.	07	401.4	L3
9.	Each year a man trades his car for a new car in 3 brands of the popular company Maruthi Udyog Limited. If he has a <i>Standard</i> he trades it for <i>Zen</i> . If he has a <i>Zen</i> , he trades for <i>Esteem</i> . If has an <i>Esteem</i> , he is just likely to trade for a <i>new Esteem</i> or	07	401.6	L4

Engineering Maths IV I Internals Mean $\mu = F(\alpha) = 2 \times b(n, b, \infty)$ = 5x ncx back of n-x 0. nc, popo - 1. nc, popo - + 2. nc, popo -> +3. nc3 p3qn-3+... + n. ncnpn $= n + q^{n-1} + 2 \frac{n(n-1)}{2} + 2q^{n-2} + 3 \frac{n(n-1)(n-2)}{3!} + 3q^{n-3}$ = n+2 9n-1+. (6-1) + 9n-2+ (6-1)(n-2) + 39n-3 = nf (q+F)^-1 = nf [m=np] Vanance 52 = 3 x2 b(r, +, x) - pt $2x^{2}b(n,p,x)=2(x-1)+x^{2}b(n,p,x)$ 20c(x-1)b(n, p, >c)+ 2xb(n, p, ∞) = 35c(3c-1) b(n, b, x) + M

 $E(x^2) = [2 nc_3 p^2 q^{n-2} + 3.2 nc_3 p^3 q^{n-3}]$ + 4.8. ng phan-4....+nn-Dpm] + $= \left[n(n-1) + q^{n-2} + n(n-1)(n-2) + 3q^{n-3} \right]$ $+\frac{n(n-1)(n-2)(n-3)}{2!}ptq^{n-t}$...+ $n(n-1)t^{n-1}$ $= \left[n(n-1) + 2 \left[q^{n-2} + (n-2) + q^{n-3} + \frac{2!}{2!} \right] + q^{n-4} \right]$ $= n(n-1)+^{2}(q++)^{n-2} = n(n-1)+^{2}+1$ $= E(x^2) - \mu^2 = n(n-1)p^2 - (n-p)^2 +$ 12/2- 262-12/27-nf ニハト(ノート)=ハチツ $\partial = n + q \Rightarrow \delta = \sqrt{n + q} \quad (51)$ 2. The chance that a telephone line is busy is given by b=0.1=1/0. Prob that & lines out of 10 lines are busy is given by

$$b(n, h, x) = nc_{x} b^{2}q^{n-x}$$

$$b(10, 0.1, x) = 10c_{x} (0.1)^{2} (0.9)^{10-x} (0.9)^{10}$$

$$b(0) = 10c_{0} (0.1)^{0} (0.9)^{10-x} (0.9)^{10}$$

$$b(10) = 10c_{10} (0.1)^{10} (0.9)^{10-10} (0.1)^{10}$$

$$b(x \ge 1) = 1 - P(x \ge 1)$$

$$1 - b(x = 0) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^{10}$$

$$1 - b(x \ge 2) = 1 - (0.9)^$$

ii)
$$P(x) = \frac{e^{-3}5^{3}}{21!} = 0.22404$$

iii) $P(x > 3) = 1 - P(x < 3)$

$$= 1 - \left[e^{-3} + 3e^{-3} + 3\frac{3}{3}e^{-3} + 3\frac{3}{3}e^{-3}\right]$$

$$= 1 - \left[e^{-3} + 3e^{-3} + 3\frac{3}{3}e^{-3} + 3\frac{3}{3}e^{-3}\right]$$

$$= 1 - e^{-3}(13) = 0.35 \times 8 = 0.6472$$

$$= 1 - 0.35 \times 8 = 0.6472$$

$$= 1 - 0.35 \times 8 = 0.6472$$

$$= 1 - 0.35 \times 8 = 0.6472$$

$$= e^{-3}(13) = 0.6472 = 30$$

$$= e^{-3}(13) =$$

$$2K \int_{e^{-sc}}^{\infty} e^{-sc} dsc = 1$$

$$2K - (e^{-sc})_{0}^{\infty} = 1$$

$$-2K (e^{-sc})_{0}^{\infty} = 1$$

$$-2K (e^{-sc})_{0}^{\infty} = 1$$

$$2K = 1 \Rightarrow \int K = \frac{1}{2}$$

$$= \int_{0}^{\infty} x \cdot dx = 1$$

$$= \int_{0}^{\infty} x^{2} dx = 1$$

P(Z>Z)=0.08 P(Z _ Z _) = 0.31 0.5-\$(2)=0.08 0.5+ \$(z)=0.31 φ(z,)= -0.19, φ(z,)=0.42 (FM) He have \$(0.5) = 0.19; \$(1.4) = 0.42 $\phi(z_1) = -\phi(0.5); \phi(z_2) = \phi(1.4)$ z, = -0.5; z=1.4 45-12 = -0.5; 64-12 = 1.490 - 0.56 = 45; M+1.45 = 64

Solvery M=50, 0=10 (M) $p(=c) = ke^{-\infty} - \infty = 2 \times 20$ He xit $\int_{-\infty}^{\infty} p(=c) dx = 1$ (Ke-loc) dec = 1 $-\infty \times \int_{-\infty}^{\infty} -|x| dx = 1$ ever for 2 K, l'e-1 x ldx = 1

$$= \int_{0}^{\infty} x^{2} e^{-xx} dx$$

$$= \int_{0}^{\infty} x^{2} e^{-xx} dx$$

$$= \int_{0}^{\infty} x^{2} e^{-xx} dx$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left(0 - 2 \right)^{2} - c + 2 \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty}$$

$$= \left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty} = -\left[-e^{-x} \left(x^{2} + 2 - c + 2 \right) \right]_{0}^{\infty}$$

$$= \left[$$

 $f(x) = 10^{-10} e^{-10} x > 0$ Let A be the amount for which profit is 8.1. A. 8 = 3000 [A=37500] (F) P(perofit exceeding 300) = 1-P(x <30) = 1-P(sales = 375) = 1- J 10-4-10-4-5C $=1-10^{-1}\left(\frac{10-10-10}{0}\right)$ $=1+e^{-3\frac{1500}{10000}}=e^{-3.75}$ P(profit exceeding 3000 for 2 days) = e = e = e = e = e = -1.5 =0.00055

$$P(X=0, Y=3) = 1/8$$

$$P(X=0, Y=2) = 2/8$$

$$P(X=0, Y=1) = 1/8$$

$$P(X=0, Y=1) = 1/8$$

$$P(X=0, Y=1) = 1/8$$

$$P(X=1, Y=0) = 1/8$$

$$P(X=1, Y=1) = 2/8$$

$$P(X=1, Y=1) = 2/8$$

$$P(X=1, Y=1) = 2/8$$

$$P(X=1, Y=1) = 2/8$$

$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

$$\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{8}} = \frac{1}{\sqrt{8}}$$

$$\frac{1}{\sqrt{8}} = \frac{1$$

$$\frac{3}{3} = \frac{1}{3} + \frac{1$$

$$\frac{1}{\sqrt{3}} = (0 0 1) \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right$$

P(1999 Zen) =
$$\frac{1}{27}$$

P(1999 Zen) = $\frac{1}{27}$

P(1999 Zen) = $\frac{1}{27}$

To find the happening for the large year, let $y = (x, y, z)$

(x y z) (0 0 0)

(x y z) (0 0 0)

(x y z) (2 0 0

$$Z = 3x, 3x + z = 3y, 3y + z = 3z$$

$$y = 1 - x - z$$

$$3 - 3x = 3z$$

$$3 - 3x = 5z$$

$$1 - x = 2$$

$$3 - 3x = 5(3x)$$

$$1 - x = 3/6 = 1/2$$

$$2 = 3/6 = 1/2$$

$$y = 1 - x - z = 1 - \frac{1}{6} - \frac{1}{2}$$

$$y = 1 - x - z = 1 - \frac{1}{6} - \frac{1}{2}$$

$$= 1 - \frac{1}{6}$$

$$= \frac{1}{6}$$

$$x = 3 - \frac{1}{6} - \frac{1}{2}$$

$$y = 1 - x - z = 1 - \frac{1}{6} - \frac{1}{2}$$

$$= 1 - \frac{1}{6}$$

$$= \frac{$$