

Internal Assesment Test -2

		Internal Assesn	nent Test -	- <u>Z</u>			
Sub: Analysis of Determinate structures					Code: 15CV42		
Date: 08/05/2017 Duration: 90 mins Max Marks: 50 Sem: 4th Branch (sections):							
	Answer any Two	question from Par	rtA And on	e question from Part B			
			Marks	OBE			
				СО	RBT		
Part A							
a) Calculate the reactions at the support of a Three hinged parabolic arch shown in Fig.1(a).					[4]	CO2	L3
b) Calculate the reactions at the support of a Three hinged parabolic arch shown in Fig.1(b). Also find the Maximum bending moment at the section where it occurs.					[16]	CO2	L3
A — — 8m	C h=8m L=30m Fig.1(a)	15 kN/m 18 A		15 kN/m C h=5m L=20m Fig.1(b)			
 a) Calculate the reactions at the support of a Three hinged parabolic arch shown in Fig.2(a). b) Calculate the reactions at the support of a Three hinged parabolic arch shown in Fig.2(b). Also find the Maximum bending moment at the section where it occurs. 					[4] [16]	CO2	L3
36KN/n	h=6m L=36m Fig.2(a)	250KN 30° B A 6m	<u> </u>	200 KN 60° h=4m 8m B =24m 9.2(b)			

	 a) A three hinged parabolic arch of 20m symmetrical span and 5m rise, carries a UDL of 40 kN/m on the entire span and a point load of 200 kN at 5m from right end. Determine the reactions .Also determine Bending Moment , Normal thrust and Radial shear at 5m from left end. b) A three hinged parabolic arch of 25 m symmetrical span and rise 5m , carries a UDL of 25 kN/m on the entire span. Find the reaction at supports. 	[16] [4]	CO3	L3
	Part B			
4	A suspension cable having supports at same level has a span of 40m and maximum dip of 4m. The cable is loaded with UDL of 10kN/m through its length. Calculate maximum and minimum tension in the cable. Also find length of the cable	[10] n	CO3	L3
5	A Cable of span 20m $$ and dip 5m carries a UDL of 20 kN/m over the whole span. Find Maximum tension in the cable , Minimum tension in the cable and Length of the cable	[10]	CO3	L3

$$V_{a} = V_{b} = \frac{1}{2} \times 10 \times 15 = 75 \text{ km}$$

Taking moment about c, of the forces on the left forces of c $H \times 5 + 75 \times \frac{2}{3} \times 10 = 75 \times 10$

$$6. H = 50 \text{ KH} \tag{4}$$

The egn to the parabola with the crown C as origin $y = \frac{4h}{l^2} x^2 = \frac{4x5}{20x20} x^2$

$$y = \frac{x^2}{20} \tag{4}$$

consider the equilibrium of the part c,

$$M_{x} = 50 \cdot \frac{\chi^{L}}{20} - \frac{1}{2} \times \frac{3\chi}{2} \cdot \frac{\chi}{3}$$

$$Mx = \frac{5}{2}x^2 - \frac{x^3}{4}$$

B.M to be Man, dMx = 0 7

$$= 5x - \frac{3}{4}x^2 = 0$$

$$x = \frac{20}{3}m$$

$$1.4 = \frac{20}{3} \text{m}$$

Max = $\frac{5}{2} \left(\frac{20}{3} \right)^{2} = -\frac{1}{4} \left(\frac{20}{3} \right)^{3}$ (4)

$$\Sigma MA = 0$$
, $V_B X30 = (60 \times 22) + 20 (2)$
 $V_B = 1360/30 = 45.33 \text{ KM}$ (2)

EMC =0,

$$+ V_{BX15} + H_{BX8} = 60X7 = 420$$
 (2)

2)
$$290 \text{ km}$$
, $200 \text{ sin } 60$
b) 30° () $150 \text{ cos} 60$
 160° 150 cos 60
 160° 150 cos 60

$$y = \frac{4h\pi}{L^2} (l - x)$$

$$= \frac{4x4x6}{(24)^2} (24-6)$$

$$0 D = \frac{3m}{2}$$

$$0 E = 3.55 m$$

EMA = 0

$$V_{B} = 158.9 \text{ KM}$$

$$V_{B} = 158.9 \text{ KM}$$
(4)

$$V_{A} = 139.2 \text{ km}$$

B. M MD =
$$-176.15 \times 3 + 139.2 \times 6$$

= 307.05×4
ME = $-292.6 \times 3.56 + 158.95 \times 6$
= 229.766×4

60

EMB =0

$$\frac{V_A - 501 \text{ kN'}}{V_B = 207 \text{ kN}} \tag{2}$$

```
200
3)
          EMA = D
          20 VB = (40 X 20 X10) + (200 x 15)
                = 550 KN
                                                 (4)
          0= V3
             VATUB = 200 + (40.820)
         EMC =0
                                                 (4)
              5H = 5500 - 1000 - 2000
               - . H = 500 FM
            ton0 = 0.5
                                                (4)
               - 0 = 26.56
        BMQD
          EMD = - VAX5 + H (3.75) + 40x5 x 5/2
                = 125 FA/M
             N = 178.5 KN
                                                (4)
             F = 461.5 KN
```

$$7 \quad \text{EMA} = 0 = -V_B(25) + 25 \times \frac{25^2}{2}$$

$$V_{B} = \frac{25 \times 25}{2} = 312.5 \text{ kN}$$

$$VA + VB = 25 \times 25$$
= 312.5 KW

(2)

$$\rightarrow$$
 Man tension, $T_{ma} = \sqrt{v^2 + 14^2} = \sqrt{200^2 + 500^2}$ (2)

$$-5$$
 Length of cable, $L_c = L + 8h^2 = 41.06 m$ (2)

$$V_{B}X_{10} - H_{B}X_{4} - 20X_{10} \times 10 = 0$$

$$H = \frac{WL}{8h} = 250 \, \text{m}'$$
(2)

$$Lc = \frac{L+8h^2}{31} = \frac{22.13 \,\text{m}}{}$$