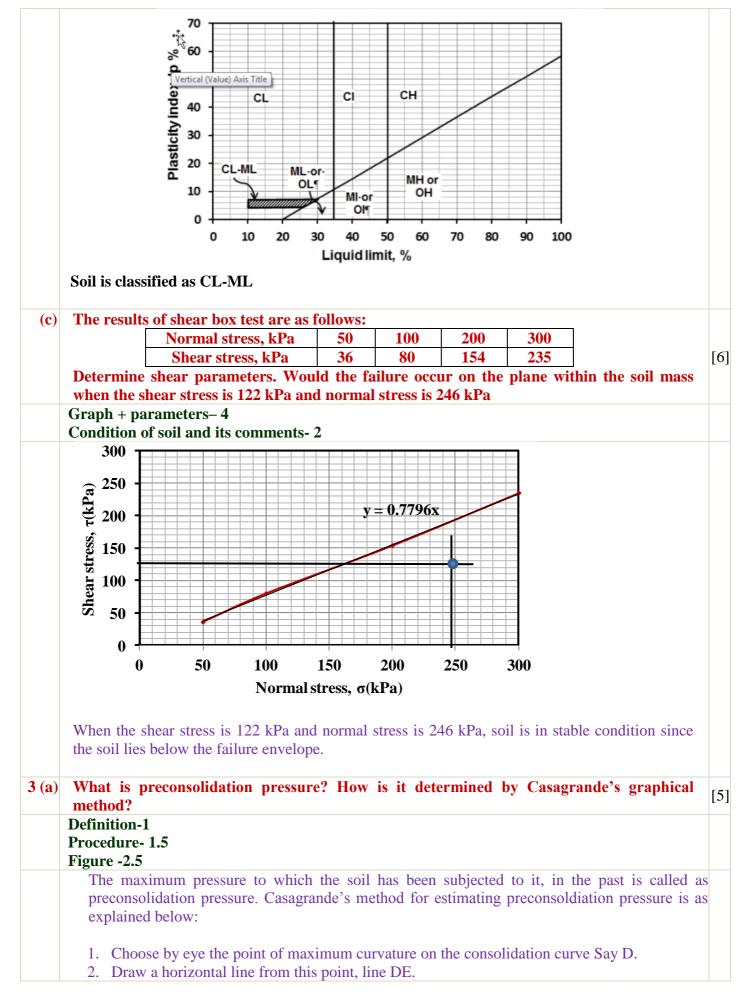
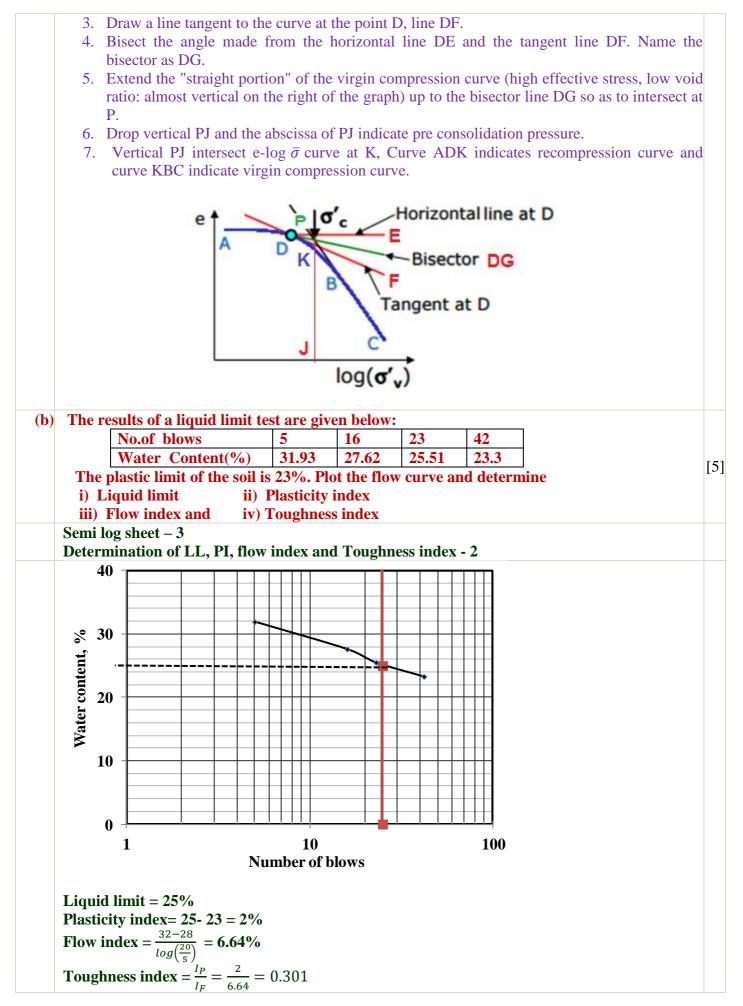

CMR	_										- asino 25 YEARS *	1 * • .
INSTITUTE OF TECHNOLOGY	USN	1	С	R		С	V)
	_	I	ntori	1 A	 ama	nt T	act	п			CM	K





of the curve (as shown in Fi and the dial reading axis is a 0%. Starting from Rc, draw times the abscissa of first str 3. The intersection point betw	denoted as w another s aight line.	Rc which straight	ch is con line suc	rrected z ch that i	ero readi its abscis	ng i.e U = sa is 1.1	= 5
represents the R90 and correct the time required (t90) for 904. The Coefficient of consolidation	esponding t 0% consoli ation (c _v) is	time is c dation i determ	letermir s calcula ined as:	ed and	-		
where d is the drain	age path :		[.] single	face d	rainage	and	
$= \frac{1}{2} f o t$ Following are the results of a Sta	r two face andard Pro						
Trial No Moisture Content (%)		2	3 11.3	4	5		
Moisture Content (%)		10.5		13.4	13.8		
Bulk Unit weight (kN/m3) The specific gravity of soil par OMC and MDD (i) Moisture d Ten percent air content curve.	ticles is 2.				20.8 g and de ls curve	termine (iii)	[6
The specific gravity of soil par OMC and MDD (i) Moisture d Ten percent air content curve. Graph- compaction curve – 2 OMC and MDD - 1 Zero air voids curve – 1.5	ticles is 2. lensity cur	.65. Plo	t the fo	ollowing	g and de		[6
The specific gravity of soil par OMC and MDD (i) Moisture d Ten percent air content curve. Graph- compaction curve – 2 OMC and MDD - 1 Zero air voids curve – 1.5 Ten percent air content curve -1	ticles is 2. lensity cur	.65. Plo	t the fo	ollowing	g and de		[6
The specific gravity of soil par OMC and MDD (i) Moisture d Ten percent air content curve. Graph- compaction curve – 2 OMC and MDD - 1 Zero air voids curve – 1.5 Ten percent air content curve -1	ticles is 2. lensity cur	.65. Plo	t the fo	ollowing	g and de		[6
The specific gravity of soil par OMC and MDD (i) Moisture d Ten percent air content curve. Graph- compaction curve – 2 OMC and MDD - 1 Zero air voids curve – 1.5 Ten percent air content curve -1	ticles is 2. lensity cur	.65. Plo	t the fo	ollowing air void	g and de		
The specific gravity of soil par OMC and MDD (i) Moisture d Ten percent air content curve. Graph- compaction curve – 2 OMC and MDD - 1 Zero air voids curve – 1.5 Ten percent air content curve -1 $\begin{bmatrix} 22\\21\\22\\21\\19\\19\\18\\17\\16\\8\\9\\10\\Wat$	ticles is 2. lensity cur	.65. Plo ve (i	t the fo	ollowing air void	g and de ls curve		
The specific gravity of soil par OMC and MDD (i) Moisture d Ten percent air content curve. Graph- compaction curve – 2 OMC and MDD - 1 Zero air voids curve – 1.5 Ten percent air content curve -1 $\left[22 \\ 21 \\ 40 \\ 19 \\ 19 \\ 18 \\ 17 \\ 16 \\ 8 \\ 9 \\ 10$	ticles is 2. lensity cur	.65. Plo ve (i	t the fo	ollowing air void	g and de ls curve		[6

2(a)		at the differences between standard e compactive energy applied in both t		tion test. Calculate	[4]
	Dif	npaction energy – 1.5 ferences -1.5 rve - 1			
	Sl No	Description	Standard compaction	Modified compaction	
	1	No of layers (N _L)	3	5	
	2	No of blows(N _B)	25	25	

	3	Mass of rammer, kg (M)	2.6	4.89
	4	Height of rammer fall, mm (H)	310	450
	5	Compaction energy		
			593	
		$= \frac{MHN_LN_B}{Volume \ of \ mould} \text{ kNm/r}$	(393)	2699
		Volume of mould	iii)	
	6	Practical application	Suitable f	
			embankme	ents pavements
	7	Effect on OMC and MDD		and decreases OMC when
			compared to star	ndard compaction test
			2.5	
			2.4	Zero air
			2.3	
			2.2 Mod	alied / / /
			-12 Sec. 1	ter test
			Ê 2.0	Y \\
			Q 1.9	
				idard
			1.6 proc	too toot
			1.0 1.0	tertest
			1.46	tertest
			1.5	tertest
			1.46	10 11 12 13 14 15 16 17
			1.5	
			1.5	10 11 12 13 14 15 16 17
			1.5	10 11 12 13 14 15 16 17
(b)		plain plasticity chart with a near	1.5 1.4 8 9	10 11 12 13 14 15 16 17 Water content (%) \rightarrow
(b)	20	% and plastic limit is 14%.	1.5 1.4 8 9	10 11 12 13 14 15 16 17 Water content (%) \rightarrow
(b)	20		1.5 1.4 8 9	10 11 12 13 14 15 16 17 Water content (%) \rightarrow
(b)	20 Ch	% and plastic limit is 14%.	1.5 1.4 8 9	10 11 12 13 14 15 16 17 Water content (%) \rightarrow
(b)	20 Ch Cla	% and plastic limit is 14%. art – 3	1.5 1.4 8 9	10 11 12 13 14 15 16 17 Water content (%) \rightarrow
(b)	20 Ch Cla Use	% and plastic limit is 14%. art – 3 assification – 1 e - 1	t sketch and classify a fine	10 11 12 13 14 15 16 17 Water content (%) → grained soil with liquid limit=
(b)	20 Ch Cla Use	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whi	t sketch and classify a fine sich more than 50% of the matrix 1.5	$\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$ grained soil with liquid limit= $[$ tterial has particle size less than
(b)	20 Ch Cla Use	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whi 0.075 mm. A plasticity chart is a c	t sketch and classify a fine ich more than 50% of the ma chart with liquid limit (WL)	$\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$ $\frac{\text{grained soil with liquid limit=}}{\text{terial has particle size less than on X-axis and plasticity index}}$
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whi 0.075 mm. A plasticity chart is a c IP) on Y-axis. According to IS cl	t sketch and classify a fine ich more than 50% of the ma chart with liquid limit (WL) lassification, fine grained so	$\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$ $\frac{\text{grained soil with liquid limit=}}{\text{terial has particle size less than on X-axis and plasticity index}}$
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whi 0.075 mm. A plasticity chart is a c	t sketch and classify a fine ich more than 50% of the ma chart with liquid limit (WL) lassification, fine grained so	$\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$ $\frac{\text{grained soil with liquid limit=}}{\text{terial has particle size less than on X-axis and plasticity index}}$
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whi 0.075 mm. A plasticity chart is a c IP) on Y-axis. According to IS clusing A-line whose equation is give	t sketch and classify a fine ich more than 50% of the ma chart with liquid limit (WL) lassification, fine grained so en as IP= 0.73 (WL- 20).	$\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{\text{Water content (\%)}}$ $\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{\text{Water content (\%)}}$ $\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{\text{Water content (\%)}}$
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whi 0.075 mm. A plasticity chart is a c IP) on Y-axis. According to IS cl	t sketch and classify a fine ich more than 50% of the ma chart with liquid limit (WL) lassification, fine grained so	$\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$ $\frac{\text{grained soil with liquid limit=}}{\text{terial has particle size less than on X-axis and plasticity index}}$
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whi 0.075 mm. A plasticity chart is a c IP) on Y-axis. According to IS clusing A-line whose equation is give	t sketch and classify a fine ich more than 50% of the ma chart with liquid limit (WL) lassification, fine grained so en as IP= 0.73 (WL- 20).	terial has particle size less than on X-axis and plasticity index ils are classified into 9 groups
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whit 0.075 mm. A plasticity chart is a c IP) on Y-axis. According to IS cl asing A-line whose equation is give Ip above A-line Ip above A-line	t sketch and classify a fine t sketch and classify a fine chart with liquid limit (WL) lassification, fine grained so en as IP= 0.73 (WL- 20). Wl<35 Wl between 35 and 50	$\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$ $\frac{\text{grained soil with liquid limit=}}{\text{iterial has particle size less than on X-axis and plasticity index ils are classified into 9 groups}$ $\frac{\text{CL}}{\text{CL}}$
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whit 0.075 mm. A plasticity chart is a control of the second sec	t sketch and classify a fine ich more than 50% of the ma chart with liquid limit (WL) lassification, fine grained so en as IP= 0.73 (WL- 20). WI<35 WI between 35 and 50 W1>50	$\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water \ content (\%)} \rightarrow$ $\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water \ content (\%)} \rightarrow$ $\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water \ content (\%)} \rightarrow$ $\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water \ content (\%)} \rightarrow$ $\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water \ content (\%)} \rightarrow$
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whit 0.075 mm. A plasticity chart is a c IP) on Y-axis. According to IS cl using A-line whose equation is give Ip above A-line Ip above A-line Ip above A-line Ip below A-line	t sketch and classify a fine ich more than 50% of the ma chart with liquid limit (WL) lassification, fine grained so en as IP= 0.73 (WL- 20). WI<35 W1 between 35 and 50 W1>50 W1<35	$\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$ $\frac{\text{grained soil with liquid limit=}{\text{grained soil with liquid limit=}}$ $\frac{12 12 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whit 0.075 mm. A plasticity chart is a contract of the second se	t sketch and classify a fine t sketch and classify a fine chart with liquid limit (WL) lassification, fine grained so en as IP= 0.73 (WL- 20). W1<35 W1 between 35 and 50 W1<35 W1 between 35 and 50	$\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water content (\%)} \rightarrow \frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water content (\%)}$ $\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water content (\%)} \rightarrow \frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water content (\%)}$ $\frac{10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \ 17}{Water content (\%)} \rightarrow 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \$
(b)	20 Ch Cla Uso H ()	% and plastic limit is 14%. art – 3 assification – 1 e - 1 Fine-grained soils are those for whit 0.075 mm. A plasticity chart is a c IP) on Y-axis. According to IS cl using A-line whose equation is give Ip above A-line Ip above A-line Ip above A-line Ip below A-line	t sketch and classify a fine ich more than 50% of the ma chart with liquid limit (WL) lassification, fine grained so en as IP= 0.73 (WL- 20). WI<35 W1 between 35 and 50 W1>50 W1<35	$\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$ $\frac{\text{grained soil with liquid limit=}{\text{grained soil with liquid limit=}}$ $\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$ $\frac{10 11 12 13 14 15 16 17}{\text{Water content (\%)} \rightarrow}$

4(a)	List and explain factors affecting compaction.	[5]
	5 Factors – 5	
	 The factors which affect the degree of compaction are given below. 1. Type of soil Normally, heavy clays, clays & silts offer higher resistance to compaction where as sandy soils and coarse grained or gravelly soils are amenable for easy compaction. 	
	Dry Density	

Water Content

Clav

2. Compactive effort / compactive energy

Greater the compactive effort, greater will be the compaction energy, greater will be the extent of compaction. Type of compaction equipment to be used is mainly dependent upon the type of soil to be compacted. For example, Sheepfoot roller can be used for silty soil or clayey soil; Pneumatic tyred roller can be used for Sands, gravel, silty soil, clayey soils

3. Layer thickness / thickness of lift

Degree of compaction is inversely proportional to the layer thickness, i.e. for a given compactive energy, thicker layer will be less compacted as compared to thin layer. Generally 200 to 300 mm layer thickness is used in the field to achieve homogeneous compaction.

4. Number of roller passes

It is obvious that density increases as the no of roller passes increases. But after certain number of roller passes, there is no further increase in density. So it is very crucial to determine the number of roller passes for a given type of equipment, for a given type of soil at optimum moisture content.

5. Moisture content

Proper control of moisture content in soil is necessary for achieving desired density. Maximum density with minimum compacting effort can be achieved by compaction of soil near its OMC (optimum moisture content). Relative compaction is the ratio of field dry density to laboratory dry density.

6. Contact pressure

Contact pressure depends on the weight of the roller wheel and the contact area. In case of pneumatic roller, the tyre inflation pressure also determines the contact pressure in addition to wheel load. A higher contact pressure increases the dry density and lowers the optimum moisture content.

7. Speed of rolling

The greater the speed of rolling, the more length of embankment can be compacted in one day. But at greater speed there is likely to be insufficient time for the desired deformations to take place and more passes may be required to achieve the required compaction.

7. Admixtures

Addition of admixtures like flyash, granulated blast furnace slag, cement, lime, gypsum when added to problematic soils, improve its compaction characteristics.

(b) The time to reach 40% consolidation of a two way drained saturated clay sample of 12 mm thick in the laboratory is 40 sec. Determine the time required for 60% consolidation of the

laboratory s	•
D value- 2	
Time period	estimation-1
	Given: $H_{lab}=0.012 \text{ m}$; $d_{lab}=0.006 \text{ m}$
	H_{field} =11 m ; d_{field} =11 m
	$T_{\nu} = \frac{\pi}{4} \times U^2$
	$T_{v} = \frac{\pi}{4} \times 0.4^{2} = 0.1256$
	$T_{\nu} = \frac{\pi}{4} \times 0.4^2 = 0.1256$ $T_{\nu} = \frac{\pi}{4} \times 0.6^2 = 0.283$
	$c_{\nu} = \frac{0.1256 \times 0.006^2}{40} = \frac{0.283 \times 11^2}{t_{60}}$
	$t_{60} = 302928167 \ sec = 3506.11 \ days = 9.61 \ years$