
Page 1 of 1

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - II

Sub: Software Testing Code: 10CS842

Date: 10/ 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: 8-A,B Branch: CSE

Answer Any FIVE FULL Questions

Marks
OBE

CO RBT
1 Explain Slice Based testing using Sales commission problem [10] CO3 L3

2 Define Predicate node, du-path, dc-path. Give du-path for stocks, locks,
totallocks, sales and commission for commission sales problem

[10] CO2 L3

3 (a) Explain mutation analysis software fault based testing [7] CO2 L3
3 (b) Define test oracle and partial oracle [3] CO2 L1
4 Explain verification trade off dimensions [10] CO3 L3
5 (a) Briefly discuss the dependability properties in process framework [7] CO3 L3
5 (b) List the fault based adequacy criteria [3] CO3 L3
6 (a) Why organizational factors are needed in process framework? [6] CO3 L3
6 (b) Define the terms Distinct, Distinguished, Alternate program & Expression, [4] CO1 L3
7 Explain the Six basic principles of Testing [10] CO3 L3

8 (a) What is scaffolding? Describe generic & application specific scaffolding. [6] CO4 L3
(b) Define All C-uses/Some P-uses, All P-uses/Some C-uses, All Defs [4] CO4 L3

Course Name / Code Software Testing / 10CS842

Course Outcomes

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

PO
9

PO
10

PO
11

PO
12

C842.1 Describe the Terminology & levels of testing
1 2 1 0 0 0 0 1 0 1 1 0

C842.1 Write the Test Document, Scenario, Case, Plan
1 1 2 1 0 0 0 1 2 1 0 0

C842.1 Explain the Software testing process, Techniques with
examples 1 2 1 1 0 0 0 1 0 1 0 0

C842.1 Describe the process framework-Validation,
Verification and Basic principles 1 1 1 1 0 0 0 1 0 1 0 0

C842.1
Explain the process by using Testing tools 1 1 1 1 2 0 0 1 1 1 2 0

C842.1 Demonstrate the process improvement in software
testing 1 1 1 2 0 0 0 1 1 3 2 0

Revised Bloom’s Taxonomy (RBT) Programme Outcome

Cognitive
level

KEYWORDS
PO1 - Engineering knowledge;
PO2 - Problem analysis;
PO3 - Design/development of solutions;
PO4 - Conduct investigations of complex
problems;
PO5 - Modern tool usage;
PO6 - The Engineer and society; PO7-
Environment and sustainability;
PO8 – Ethics;
PO9 - Individual and team work;
PO10 - Communication;
PO11 - Project management and
finance;
PO12 - Life-long learning

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,
experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,
conclude, compare, summarize.

1. Explain Slice Based testing with an example.

Slice Based Testing
• The second type of data flow testing
• A program slice is a set of program statements that contribute to, or affect a value
for a variable at some point in the program
• The idea of slicing is to divide a program into components that have some useful
meaning

• Definition:
– Given a program P, and a program graph G(P) in which statement fragments are
numbered, and a set V of variables in P, the slice on the variable set V at statement
fragment n, written S(V,n) is the set node numbers of all statement fragments in P
prior to n that contribute to the values of variables in V at statement fragment n.

• “prior to”: a slice captures the execution time behaviour of a program with respect to
the variable(s) in the slice
• “contribute”: some declarative statements have an effect on the value of a variable
(e.g. const, type)
– We will exclude those non-executable statements

The USE relationship pertains to five forms of usage:
– P-use: used in a predicate (decision)
– C-use: used in a computation
– O-use: used for output
– L-use: used for location (e.g. pointers)
– I-use: used for iteration (internal counters, loop indices)
• Definition nodes:
– I-def: defined by input
– A-def: defined by assignment
• Eventually we will develop a DAG (directed acyclic graph) of slices in which nodes
are slices and edges correspond to the subset relationship

• Guidelines for choosing slices:
– If the value of v is the same whether the statement fragment is included or excluded,
exclude the fragment.
– If statement fragment n is:
• a defining node for v, include n in the slice
• a usage node for v, exclude n from the slice
– O-use, L-use & I-use nodes are excluded from slices

Example of Slice-Based Testing: The Commission Program
• S1: S(locks,13) = {13} (defining node I-def)
• S2: S(locks,14) = {13,14,19,20}
• S3: S(locks,16) = {13,14,16,19,20}
• S4: S(locks,19) = {19} (defining node I-def)
• S5: S(stocks,15) = {13,14,15,19,20}
• S6: S(stocks,17) = {13,14,15,17,19,20}
• S7: S(barrels,15) = {13,14,15,19,20}
• S8: S(barrels,18) = {13,14,15,18,19,20}
• S9: S(totallocks,10) = {10} (A-def)
• S10: S(totallocks,16) = {10,13,14,16,19,20} (A-def & C-use)
S(totallocks,21)= {10,13,14,16,19,20} 21 is an O-Use of totallocks, excluded
• S11: S(totallocks,24) = {10,13,14,16,19,20} (24 is a C-use of total locks)
• S12: S(totalstocks,11) = {11} (A-def)
• S13: S(totalstocks,17) = {11,13,14,15,17,19,20} (A-def & C-use)
• S14: S(totalstocks,22) = {11,13,14,15,17,19,20}(22 is an O-Use of totalstocks)
• S15: S(totalbarrels,12) = {12}
• S16: S(totalbarrels,18) = {12,13,14,15,18,19,20} (A-def & C-use)
• S17: S(totalbarrels,23) = {12,13,14,15,18,19,20} (23 is an O-Use of totalbarrels)
• S18: S(lock_price,24) = {7} (A-def)
• S19: S(stock_price,25) = {8}
• S20: S(barrel_price,26) = {9}
• S21: S(lock_sales,24) = {7,10,13,14,16,19,20,24}
• S22: S(Stock_sales,25) = {8,11,13,14,15,17,19,20,25}
• S23: S(barrel_sales,26) = {9,12,13,14,15,18,19,20,26}
• S24: S(sales,27) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
• S25: S(sales,28) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
• S26: S(sales,29) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
• S27: S(sales,33) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
• S28: S(sales,34) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
• S29: S(sales,37) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}
• S30: S(sales,38) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,26,27}

– S24= S10S13S16S21S22S23

– If the value of sales is wrong, we first look at how it is computed, and if this is
OK, we check how the components are computed

• S31: S(commission,31) = {31}
• S32: S(commission,32) = {31,32}
• S33: S(commission,33) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,
26,27,29,30,31,32,33}
• S34: S(commission,36) = {36}

• S35: S(commission,37) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,
26,27,36,37}
• S36: S(commission,38) = {7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,
26,27,29,34,38}
• S37: S(commission,41) ={7,8,9,10,11,12,13,14,15,16,17,18,19,20,24,25,

26,27,29,30,31,32,33,34,35,36,37,38}

2. Defining node Usage node , Predicate node, Du-path, Dc-path

Definition:
a) – Node n ÎG(P) is a defining node of the variable v Î V, written as DEF(v,n), iff

the value of the variable v is defined at the statement fragment corresponding to
node n.

• For example: input , assignment, loop control statements (for int i=0;i<10;i++) and
procedure calls are defining nodes
• When the code corresponding to such statements executes,
contents of the memory location associated with v is changed

b) – Node n ÎG(P) is a usage node of the variable v Î V, written as USE(v,n), iff the
value of the variable v is used at the statement fragment corresponding to node n.

• For example: output , assignment(i:=i+1), condition, loop control statements and
procedure calls are usage nodes
• When the code corresponding to such statements executes, contents of the memory
location associated with v is not changed

c) – A usage node USE(v,n) is a predicate use (denoted as P-use), iff the statement n
is a predicate statement; otherwise USE(v,n) is a computation use, (denoted C-
use)

d) – A definition-use (sub) path with respect to a variable v (denoted du-path) is a
(sub) path in PATHS(P) such that for some v Î V, there are define and usage
nodes DEF(v,m) & USE(v,n) such that m & n are the initial and final nodes of the
(sub) path.

e) – A definition-clear (sub) path with respect to a variable v (denoted dc-path) is a
definition-use(sub) path in PATHS(P) with initial and final nodes DEF(v,m) &
USE(v,n) such that no other node in the (sub) path is a defining node of v
• Du-paths that are not definition-clear are potential trouble spots!

Explain the Du-path for Commission problem. (Or) Define/Use Testing

Variable stocks:
– We have DEF(stocks,15) & USE (stocks,17)
• Hence path <15,17> is a du-path with respect to stocks
• p0 = <25,27> is also decision-clear, a dc-path

• Variable locks:
– We have DEF(locks,13), DEF(locks,19),

USE(locks,14) & USE(locks,16): 4 du-paths(dc too!)
• p1 = <13,14>
• p2 = <13,14,15,16>
• p3 = <19,20,14>
• p4 = < 19,20,14,15,16>
• We could extend p1 and p3 to include node 21:
• p1` = <13,14,21> & p3` = <19,20,14,21>
– Then p1`,p2,p3` & p4 form a very complete set of test cases for the while loop
» Bypass the loop » Begin the loop » Repeat the loop » Exit the loop

Variable totallocks:
– We have: • DEF(totallocks,10) & DEF(totallocks,16)
• USE(totallocks,16), USE(totallocks,21),USE(totallocks,24)
• We could expect 6 du-path, why?
• There are only 5:
– p5 = <10,11,12,13,14,15,16> (also a dc-path)
– p6 = <10,11,12,13,14,15,16,17,18,19,20,21>
» The subpath: <16,17,18.19.20,14,15> might be traversed several times

» This is not a dc-path, if there is a problem with the value of totallocks at node 21,
we should look at the defining node, 16
– p7 = < 10,11,12,13,14,15,16,17,18, 19,20,21,22,23,24>
» p7 = <p6, 22,23,24 >, not a dc-path
– <16,16> is degenerate, disregard it
– p8 = < 16,17,18,19,20,21> this is a dc-path
– p9 = < 16,17,18,19,20,21,23,24> this is a dc-path
• p8 & p9 have the same loop iteration problem as p6

Variable sales:
– DEF(sales,27), USE(sales,28), USE(sales,29),

USE(sales,33), USE(sales,34) , USE(sales,37) ,USE(sales,38)
– p10 = <27,28>
– p11 = <27,28,29>
– p12 = < 27,28,29, 30,31,32,33>
» This is a dc-path covering p10 & p11 » If we test with p12, we will cover p10 &
p11 too
– p13 = < 27,28,29,34>
– p14 = < 27,28,29,34,35,36,37>
– p15 = < 27,28,29,38>

• Variable commission:
• Since 31,32 & 33 could be replaced by:
– Commission := 220 + 0.2 * (sales - 1800), then 33 could be considered the defining
node
• Same for 36,37 could be considered the defining node
– DEF(commission, 33), DEF(commission, 37),

DEF(commission, 38), USE(commission, 41)
– p16 = <33,41> (a dc-path) – p17 = <37,41> (a dc-path) – p18 = <38,41> (a dc-path)

Understand by comparing the program and Define Use Variables

3. Explain mutation analysis software fault based testing (Or) Explain mutation testing.

Mutation testing (or Mutation analysis or Program mutation) is used to design new software
tests and evaluate the quality of existing software tests.

Mutation testing involves modifying a program in small ways.

A mutant is a copy of a program with a mutation
• A mutation is a syntactic change (a seeded bug)
– Example: change (i < 0) to (i <= 0)
• Run test suite on all the mutant programs
• A mutant is killed if it fails on at least one test case
• If many mutants are killed, infer that the test suite is also effective at finding real bugs

.

The patterns ∆ mutation operator for changing program text is called mutation operators. We
say a mutant is valid if it is syntactically ∆ useful mutant correct. We say a mutant is useful
if, in addition to being valid mutant, its behavior differs from the behavior of the original
program for no more than a small subset of program test cases.

Write all together 10 modification irrespective of Operand, expression and statement.

b) Software that applies a pass/fail criterion to a program execution is called a test oracle,
often shortened to oracle. Oracle that checks result without reference to a predicted output are
often partial, which is called partial oracle.

4. Explain verification trade-off Dimensions. (Or) Degree of freedom

The activities for assuring the correctness of reactive systems reside within the Validation
and Verification (V&V) process. Verification is an attempt to ensure that the product is built
correctly, in the sense that the output products of an activity meet the specifications imposed
on them in previous activities. Validation is an attempt to ensure that the right product is
built, that is, the product fulfills its specific intended purpose. The V&V process determines
whether or not products of a given development or maintenance activity conform to the
requirement of that activity, and whether or not the final software product fulfills its intended
purpose and meets user requirements.

Given a precise specification and a program, it seems that one ought to be able to arrive at
some logically sound argument or proof that a program satisfies the specified properties.

For some properties and some very simple programs, it is in fact possible to obtain a logical
correctness argument, albeit at high cost. In a few domains, logical correctness arguments
may even be cost-effective for a few isolated, critical components (e.g., a safety interlock in a
medical device). In general, though, one cannot produce a complete logical “proof” for the
full specification of practical programs in full detail. This is not just a sign that technology for
verification is immature. It is, rather, a consequence of one of the most fundamental
properties of computation.

In theory, undecidability of a property S merely implies that for each verification technique
for checking S, there is at least one “pathological” program for which that technique cannot
obtain a correct answer in finite time. It does not imply that verification will always fail or
even that it will usually fail, only that it will fail in at least one case.

Program testing is a verification technique and is as vulnerable to undecidability as other
techniques. Exhaustive testing, that is, executing and checking every possible behaviour of a
program, would be a “proof by cases,” which is a perfectly legitimate way to construct a
logical proof.

A technique for verifying a property can be inaccurate in one of two directions. It may be
pessimistic, meaning that it is not guaranteed to accept a program ∆ optimistic even if the
program does possess the property being analyzed, or it can be optimistic if it may accept
some programs that do not possess the property (i.e., it may not detect all violations). Testing
is the classic optimistic technique, because no finite number of tests can guarantee
correctness. Many automated program analysis techniques for properties of program
behaviors3 are pessimistic with respect to the properties they are designed to verify. Some
analysis techniques may give a third possible answer, “don’t know.” We can consider these
techniques to be either optimistic or pessimistic depending on how we interpret the “don’t
know” result. Perfection is unobtainable, but one can choose techniques that err in only a
particular direction. A software verification technique that errs only in the pessimistic
direction is called a conservative analysis. It might seem that a conservative analysis would
always be preferable to one that could accept a faulty program.

5. Briefly discuss the dependability properties in process framework (or) Dependability
properties

A program is “correct” if it is consistent with its specification, i.e., if it does exactly what the
specification says it must do. It is therefore a consistency relation between two things, the
specification and the program. It is impossible to say whether a program is correct in the
absence of a specification, although the specification may be informal or implicit.

Reliability is a way of statistically approximating correctness. Reliability can be stated in
different ways. Classical reliability is often stated in terms of time, e.g., mean time between
failures (MTBF) or availability (likelihood of correct functioning at any given time).

Time-based reliability measures are often used for continuously functioning software (e.g., an
operating system or network interface), but for other software “time” is often replaced by a
usage-based measure (e.g., number of executions). For example, mean time between failures
(MTBF) is a statement about the likelihood of failing before a given point in time (but “time”
may be measured in number of uses or some other way).

Availability is the likelihood of correct functioning at any particular point in time. Reliability
describes the behavior of a program, which may not be correlated to structural measures of
quality.

A program is reliable but not correct when failures occur rarely. (A “failure” is any behaviour
that is not permitted by the specification.)

A program may be correct without being safe or robust if the specification is inadequate, in
the sense that the specification does not rule out some undesirable behaviours.

A particularly common way in which a program can be correct (or at least reliable) without
being safe or robust is when the specification is only partly defined

Safety is a sub-category of robustness specifically concerned with avoiding certain very bad
behaviors. The undesired outcomes are called “hazards,” and safety engineering is
concerned with identifying and preventing hazards. Sometimes this literally means “human
safety,”

A system is robust if it acts reasonably in severe or unusual conditions. It is not possible to
give a precise definition of robustness, but one characteristic of robust systems is that their
specifications include “desired reactions to undesirable situations”. Robustness is often (but
not always) concerned with partial functionality, also called “graceful degradation.”

“Fail soft” is the same as the aforementioned “graceful degradation,” i.e., maintaining some
level of useful functionality despite partial system failure.

“Fail safe” is avoidance of harmful behaviour, perhaps without providing any useful
functionality at all. In many cases, this simply means shutting down to avoid doing harm.

b) List the fault based adequacy criteria

Fault-Based Adequacy Criteria

Given a program and a test suite T, mutation analysis consists of the following steps:
Select mutation operators: If we are interested in specific classes of faults, we may select a
set of mutation operators relevant to those faults.
Generate mutants: Mutants are generated mechanically by applying mutation operators to
the original program.
Distinguish mutants: Execute the original program and each generated mutant with the test
cases in T. A mutant is killed when it can be distinguished from the original program.

We say that mutants not killed by a test suite are live.
A mutant can remain live for two reasons:
• The mutant can be distinguished from the original program, but the test suite T does not
contain a test case that distinguishes them, i.e., the test suite is not adequate with respect to
the mutant.
• The mutant cannot be distinguished from the original program by any test case, i.e., the
mutant is equivalent to the original program.

6. Why organizational factors are needed in process framework?

Organizational factors Organizational factors
• Different teams for development and quality?
– separate development and quality teams is common in large organizations
– indistinguishable roles is postulated by some methodologies (extreme programming)

• Different roles for development and quality?
– test designer is a specific role in many organizations
– mobility of people and roles by rotating engineers over development and testing tasks
among different projects is a possible option

Example of Allocation of Responsibilities • Allocating tasks and responsibilities is a
complex job:

we can allocate
– Unit testing

• to the development team (requires detailed knowledge of the code)
• but the quality team may control the results (structural coverage)

– Integration, system and acceptance testing
• to the quality team
• but the development team may produce scaffolding and oracles

– Inspection and walk-through
• to mixed teams

– Regression testing
• to quality and maintenance teams
– Process improvement related activities
• to external specialists interacting with all teams

Allocation of Responsibilities and rewarding mechanisms: case A

• allocation of responsibilities
• Development team responsible development measured with LOC per person month
• Quality team responsible for quality
• possible effect
• Development team tries to maximize productivity, without considering quality
• Quality team will not have enough resources for bad quality products
• result
• product of bad quality and overall project failure

Allocation of Responsibilities and rewarding mechanisms: case B

• allocation of responsibilities
• Development team responsible for both development and quality control
• possible effect
• the problem of case A is solved
• but the team may delay testing for development without leaving enough
resources for testing
• result
• delivery of a not fully tested product and overall project failure

b) Define the below terms

1. Alternate Expression
2. Alternate Program
3. Distinct Behaviour
4. Distinguished Behaviour

7. Explain the basic six principles.

• General engineering principles:
– Partition: divide and conquer
– Visibility: making information accessible
– Feedback: tuning the development process

• Specific A&T principles:
– Sensitivity: better to fail every time than sometimes
– Redundancy: making intentions explicit
– Restriction: making the problem easier

1) Sensitivity: better to fail every time than sometimes
Consistency helps:

a. a test selection criterion works better if every selected test provides the same
result, i.e., if the program fails with one of the selected tests, it fails with all of
them (reliable criteria)

b. run time deadlock analysis works better if it is machine independent, i.e., if the
program deadlocks when analyzed on one machine, it deadlocks on every
machine.

2) Redundancy: making intentions explicit
Redundant checks can increase the capabilities of catching specific faults early or
more efficiently.

a. Static type checking is redundant with respect to dynamic type checking, but it
can reveal many type mismatches earlier and more efficiently.

b. Validation of requirement specifications is redundant with respect to
validation of the final software, but can reveal errors earlier and more
efficiently.

c. Testing and proof of properties are redundant, but are often used together to
increase confidence

3) Partition: divide and conquer
Hard testing and verification problems can be handled by suitably partitioning the
input space:

a. both structural and functional test selection criteria identify suitable partitions
of code or specifications (partitions drive the sampling of the input space)

b. verification techniques fold the input space according to specific
characteristics, grouping homogeneous data together and determining
partitions

4) Restriction: making the problem easier
Suitable restrictions can reduce hard (unsolvable) problems to simpler (solvable)
problems

a. A weaker spec may be easier to check: it is impossible (in general) to show
that pointers are used correctly, but the simple Java requirement that pointers
are initialized before use is simple to enforce.

b. A stronger spec may be easier to check: it is impossible (in general) to show
that type errors do not occur at run-time in a dynamically typed language, but
statically typed languages impose stronger restrictions that are easily
checkable.

5) Visibility: Judging status
a. The ability to measure progress or status against goals

i. X visibility = ability to judge how we are doing on X, e.g., schedule
visibility = “Are we ahead or behind schedule,” quality visibility =
“Does quality meet our objectives?”

b. Involves setting goals that can be assessed at each stage of development
i. The biggest challenge is early assessment, e.g., assessing specifications

and design with respect to product quality
Related to observability

c. Example: Choosing a simple or standard internal data format to facilitate unit
testing.

6) Feedback: tuning the development process
Learning from experience: Each project provides information to improve the next
Examples

a. Checklists are built on the basis of errors revealed in the past
b. Error taxonomies can help in building better test selection criteria
c. Design guidelines can avoid common pitfalls

8. What is scaffolding? Describe generic & application specific scaffolding.

Scaffolding
Code produced to support development activities (especially testing), Not part of the
“product” as seen by the end user May be temporary (like scaffolding in construction of
buildings Includes Test harnesses, drivers, and stubs.

• Test driver
– A “main” program for running a test

• May be produced before a “real” main program
• Provides more control than the “real” main program

– To driver program under test through test cases

• Test stubs
– Substitute for called functions/methods/objects

• Test harness
– Substitutes for other parts of the deployed environment
• Ex: Software simulation of a hardware device

The purpose of scaffolding is to provide controllability to execute test cases and observability
to judge the outcome of test execution. Sometimes scaffolding is required to simply make a
module executable.

b)Define All C-uses/Some P-uses, All P-uses/Some C-uses, All Defs

The set T satisfies the All P-Uses/Some C-Uses criterion for the program P iff for every
variable v Î V, T contains definition clear (sub) paths from every defining node of v to every
predicate use of v and if a definition of v has no P-uses, there is a definition-clear path to
at least one computation use.

– The set T satisfies the All C-Uses/Some P-Uses criterion for the program P iff for every
variable v Î V, T contains definition clear (sub) paths from every defining node of v to every
computation use of v and if a definition of v has no C-uses, there is a definition-clear path
to at least one predicate use

The set T satisfies the All-Defs criterion for the program P iff for every variable v Î V, T
contains definition clear (sub) paths from every defining node of v to a use of v

	QP of 10CS842 Software Testing - Aishwaryalakshmi V.pdf
	IAT-II solution of 10CS842 Software Testing May 2017 by Aishwarya Lekshmi.pdf

