

Internal Assessment Test - II

Sub:	File structures							Code:	10IS63		
Date:	/0 /2017	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ISE		
Answer Any FIVE FULL Questions											
						OBE					
								Marl	CC		RBT
1	1 Explain K-Way merging algorithm in files with an example of k=8?					[10	1 C()	L2		
						4					
2	Discuss the methods used to avoid collision in hashing. [1					[10	1 CO)	L2		
	biseuss the methods used to avoid comston in mashing.										
3	Discuss about Hashing Functions in detail with necessary examples. [10]] C()	L1			
4	What is an index? How to create a simple Index? Illustrate with an [10]				- 1)	L1				
example and the implementation class for INDEX?						3					
5 Apply Data compression over the files for saving space? Explain.					CO)	L1				
	1 -pp1) = www vomp10		11100 1	er su ing sput					2		21
								[10)]		
6	Define multiple key	y? List the (Operation	s involved wit	h secon	dary ke	eys?		CO)	L3
								[10)] 3		
7	Define reclaiming s	space? expla	ain how is	achieved on f	ixed an	d varial	ole	[10	-)	L1
	length records.								2		

<u>Internal Assessment Test 2 – may 2017</u>

SCHEME & SOLUTION

Sub:	File Structures			Code:	10IS63
		Sem:	VI	Branch:	ISE

1. Explain K-Way merging algorithm in files with an example of k=8 ? [10]

k-way merge 2

A merge of order k.

order of a merge

The number of input lists being merged.

- If the distribution phase creates *k* runs, a single k-way merge can be used to produce the final sorted file.
- A significant amount of seeking is used by a k-way merge, assuming the input runs are on the same disk.

k-way merge

A merge of order k.

order of a merge

The number of input lists being merged.

- If the distribution phase creates *k* runs, a single k-way merge can be used to produce the final sorted file.
- A significant amount of seeking is used by a k-way merge, assuming the input runs are on the same disk.

Multistep Merging

multistep merge [8]

A merge which is carried out in two or more stages, with the output of one stage being the input to the next stage.

- A multistep merge increases the number of times each record will be read and written.
- Using a multistep merge can decrease the number of seeks, and reduce the overall merge time.

Sorting Files on Tape

• When sorting with tape, multiple runs are placed in a single file.

balanced merge

A multistep merge which uses the same number of output files as input files.

A merge which is carried out in two or more stages, with the output of one stage being the input to the next stage.

- A multistep merge increases the number of times each record will be read and written.
- Using a multistep merge can decrease the number of seeks, and reduce the overall merge time.

Sorting Files on Tape

• When sorting with tape, multiple runs are placed in a single file.

balanced merge

A multistep merge which uses the same number of output files as input files.

2. Discuss the methods used to avoid collision in hashing. [10]

Collisions [2]

• synonyms

Keys which hash to the same value.

• collision

An attempt to store a record at an address which does not have sufficient room

• packing density

The ratio of used space to allocated space.

• For simple hashing, the probability of a synonym is the same as the packing density.

How Much Extra Memory Should be Used?

• Increasing memory (i.e., increasing the size of the hash table) will decrease collisions.

Collision Resolution by Progressive Overflow [8]

- progressive overflow
 - A collision resolution technique which places overflow records at the first empty address after the home address
- With progressive overflow, a sequential search is performed beginning at the home address.
- The search is continued until the desired key or a blank record is found.
- Progressive overflow is also referred to as *linear probing*.

	0	
h(123-45-6789) = 4	1	876-54-3210
h(101-20-3029) = 3	2	
-	3	101-20-3029
h(987-65-4322) = 5	4	123-45-6789
h(876-54-3210) = 1	5	987-65-4322
,	6	987-65-4321
h(987-65-4321) = 4	7	101-20-3030
(****	8	
h(101-20-3030) = 4	9	
	10	

3. Discuss about Hashing Functions in detail with necessary examples. [10]

Modulus [5*2]

- Modulus the key is divided by the size of the table, and the remainder is used as the hash function.
- Example:

Key =
$$123-45-6789$$

 123456789 % 11 = 5
 $h(123-45-6789) = 5$

• Modulus functions work better when the divisor is a prime number, or at least not a composite of small numbers.

Fold and Add

• fold and add

A hashing techique which separates a long key field into smaller parts which are added together.

• Example:

456

$$\frac{+789}{1368}$$
 $h(123-45-6789) = 1368$

• Fold and add is used for long keys.

Mid-square

• mid-square hashing method which squares the key and the uses the middle digits of the result.

Key =
$$123-45-6789$$

 123456789^2 = 15241578750190521
 $h(123-45-6789) = 8750$

Combined methods

• Practical hashing functions often combine techniques.

• Example:

• For non-numeric keys, the key is simply treated as though it were a number, using its internal binary representation.

• Example:

Key = "Kemp" =
$$4B656D70_{16} = 1264938352_{10}$$

4. Discuss about Making deletions in records using hashing. [10]

Making Deletions

[2]

• tombstone

A marker placed on a deleted record.

- Using a tombstone avoids terminating a probe prematurely.
- Locations containing a tombstone can be be used for records being added.

	0	
h(123-45-6789) = 4	1	876-54-3210
h(101-20-3029) = 3	2	
1 (447 05 4000) - 5	3	101-20-3029
h(987-65-4322) = 5	4	123-45-6789
h(876-54-3210) = 1	5	**
	6	987-65-4321
h(987-65-4321) = 4	7	101-20-3030
,	8	
h(101-20-3030) = 4	9	
	10	

5. Define Extendible hashing. Explain in detail with steps and example [10]

How Extendible Hashing Works [2]

Tries

• trie

A search tree in which the child of each node is determined by subsequent charaters of the key.

- An alphabetic (radix 26) trie potentially has one child node for each letter of the alphabet.
- A decimal (radix 10) trie has up to 10 children for each note.
- The trie can be shortened by the use of buckets.
- The bucket distribution can be balanced by the use of hashing.

Key	Hash
5554321	100111001
5550123	10111010
5541234	100111100
5551234	1011110
3217654	100111101
1237654	10011011
5557654	101110011
1234567	1101001

Turning the Tries into a Directory [4]

extendible hashing
 An application of hashing that works well with files that over time undergo substantial changes in size.

Splitting to Handle Overflow [4]

• splitting

Creation of a new node when a node overflows, with the partial distribution of the contents of the overflowing node to the new node.

6. What is an index? How to create a simple Index ?Illustrate with an example and the

implementation class for INDEX? [10]

simple index [2]

An index in which the entries are a key ordered linear list.

- Simple indexing can be useful when the entire index can be held in memory.
- Changes (additions and deletions) require both the index and the data file to be changed.
- Updates affect the index if the key field is changed, or if the record is moved.
- An update which moves a record can be handled as a deletion followed by an addition.

What is an Index? [4]

index

A structure containing a set of entries, each consisting of a key field and a reference field, which is used to locate records in a data file.

key field [4]

The part of an index which contains keys.

reference field

The part of an index which contains information to locate records.

- An index imposes order on a file without rearranging the file.
- Indexing works by indirection.

7. What is multiple key? List the Operations involved with secondary keys? [10]

secondary key [2]

A search key other than the primary key. secondary index [3]

An index built on a secondary key.

- Secondary indexes can be built on any field of the data file, or on combinations of fields.
- Secondary indexes will typically have multiple locations for a single key.
- Changes to the data may now affect multiple indexes.
- 1. CREATE 2. Append 3.load 4.delete 5.search 6.modify

- The reference field of a secondary index can be a direct reference to the location of the entry in the data file.
- The reference field of a secondary index can also be an indirect reference to the location of the entry in the data file, through the primary key.
- Indirect secondary key references simplify updating of the file set.
- Indirect secondary key references increase access time.

Retrieval Using Combinations of Secondary Keys [5]

- The search for records by multiple keys can be done on multiple index, with the combination of index entries defining the records matching the key combination.
- If two keys are to be combined, a list of entries from each key index is retrieved.
- For an "or" combination of keys, the lists are merged.
- I.e., any entry found in either list matches the search.
- For an "and" combination of keys, the lists are matched.
- I.e., only entries found in both lists match the search.