
CMR
INSTITUTE OF USN
TECHNOLOGY

Internal Assessment Test 2 – May 2017

Note: Answer any 5 questions. All questions carry equal marks. Total marks: 50

Marks
OBE

CO RBT

1. Define architectural pattern. Explain dynamics of pipes and filters pattern. [10] CO4 L3

2. Explain the structure and implementation steps of layers pattern. [10] CO4 L3
3. Explain the structure, dynamics and consequences of whole part. [10] CO4 L4

4. a. Explain the variants of proxy. [06] CO4 L5
b. Explain the structure of master slave [04] CO4 L3

5. Explain the structure and implementation steps and consequences of access control [10] CO4 L4

6. a. Explain dynamics of master slave [06] CO4 L4

b. List uses of architecture documentation and explain creating team structure. [04] CO5 L2

7. Explain ADD in detail. [10] CO5 L4

8. a. Explain documentation of views. [06] CO5 L3

b. Explain documentation across views. [04]

Sub: Software Architectures Code: 10IS81
Date: 08-05-17 Duration: 90 mins Max Marks: 50 Sem: II Branch: CSE

CMR
INSTITUTE OF SCHEME OF EVALUATION
TECHNOLOGY

Internal Assessment Test 1 – March 2017

Note: Answer any 5 questions. Total marks: 50

Question No Description Distribution of Marks Total Marks

1. Definition of architectural pattern.
4 dynamics of pipes and filters pattern.

2M
(2*4)M

10M 10M

2. Structure of layers(Diagram and Explanation)
Implementation Steps with explanation

5M
5M

10M 10M

3.
Structure of whole part
Dynamics of whole part
Consequences of whole part.

2M
4M
4M

10M 10M

4.
a. Variants of proxy (1*6)M 6M 10M

b. Structure of Master Slave(Diagram and
Explanation)

(2*2)M 4M

5.
Structure of access control
Implementation steps of access control
Consequences of access control

4M
2M
4M

10M 10M

6.
a. Dynamics of master slave(Diagram and

Explanation)
(3*2)M 6M 10M

b. Uses of architecture documentation
Creating team structure

2M
2M

4M

7.

ADD Definition
Sample Input
Explanation of Step 1
Explanation of Step 2
Explanation of Step 3

2M
1M
1M
5M
1M

10M 10M

8.

a.
Documentation of Views
Diagram
Explanation

2M
4M

6M 10M

b.
Documentation across Views
Diagram
Explanation

2M
2M

4M

Sub: Software Architectures Code: 10IS81

Date: 28/3/2017 Duration:
90

mins
Max

Marks: 50 Sem: VIII Branch: CSE

1. Define architectural pattern. Explain dynamics of pipes and filters pattern.
Architectural patterns express fundamental structural organization schemas for software systems. They
provide a set of predefined subsystems, specify their responsibilities, and include rules and guidelines for
organizing the relationships between them.

PIPES AND FILTERS
The pipes and filter’s architectural pattern provides a structure for systems that process a stream of data.
Each processing step is encapsulated in a filter component. Data is passed through pipes between
adjacent filters. Recombining filters allows you to build families of related systems.

Dynamics:
The following scenarios show different options for control flow between adjacent filters.
Scenario 1 shows a push pipeline in which activity starts with the data source.

Scenario 2 shows a pull pipeline in which control flow starts with the data sink.

Scenario 3 shows a mixed push-pull pipeline with passive data source and sink. Here second filter plays
the active role and starts the processing.

Scenario 4 shows a more complex but typical behavior of pipes and filter system. All filters actively pull,
compute, and push data in a loop.
The following steps occur in this scenario:
1. Filter 2 tries to get new data by reading from the pipe. Because no data is available the data request
suspends the activity of Filter 2-the buffer is empty.
2. Filter 1 pulls data from the data source and performs function f 1.
3. Filter 1 then pushes the result to the pipe.
4. Filter 2 can now continue, because new input data is available. Filter l can also continue, because it is
not blocked by a full buffer within the pipe.
5. Filter 2 computes f 2 and writes its result to the data sink.
6. In parallel with Filter 2's activity, Filter 1 computes the next result and tries to push it down the pipe.
This call is blocked because Filter 2 is not waiting for data-the buffer is full.
7. Filter 2 now reads new input data that is already available from the pipe. This releases Filter 1 so that it
can now continue its processing

2. Explain the structure and implementation steps of layers pattern.
The layers architectural pattern helps to structure applications that can be decomposed into groups of
subtasks in which each group of subtasks is at a particular level of abstraction.
Structure:
An individual layer can be described by the following CRC card:

The main structural characteristics of the layers patterns is that services of layer J are only use by layer
J+1-there are no further direct dependencies between layers. This structure can be compared with a stack,
or even an onion. Each individual layer shields all lower from direct access by higher layers.

Implementation:
The following steps describe a step-wise refinement approach to the definition of a layered architecture.
Define the abstraction criterion for grouping tasks into layers.
o This criterion is often the conceptual distance from the platform (sometimes, we encounter other
abstraction paradigm as well).
o In the real world of software development we often use a mix of abstraction criterions. For ex, the
distance from the hardware can shape the lower levels, and conceptual complexity governs the higher
ones.
Determine the number of abstraction levels according to your abstraction criterion.
o Each abstraction level corresponds to one layer of the pattern.

o Having too many layers may impose unnecessary overhead, while too few layers can result in a poor
structure.
Name the layers and assign the tasks to each of them.
o The task of the highest layer is the overall system task, as perceived by the client.
o The tasks of all other layers are to be helpers to higher layers.
Specify the services
o It is often better to locate more services in higher layers than in lower layers.
o The base layers should be kept ‘slim’ while higher layers can expand to cover a spectrum of
applicability.
o This phenomenon is also called the ‘inverted pyramid of reuse’.
Refine the layering
o Iterate over steps 1 to 4.
o It is not possible to define an abstraction criterion precisely before thinking about the implied layers and
their services.
o Alternatively it is wrong to define components and services first and later impose a layered structure.
Specify an interface for each layer.
o If layer J should be a ‘black box’ for layer J+1, design a flat interface that offers all layer J’s services
Structure individual layers
o When an individual layer is complex, it should be broken into separate components. o This subdivision
can be helped by using finer-grained patterns.
Specify the communication between adjacent layers.
o Push model (most often used): when layer J invokes a service of layer J+1, any required information is
passed as part of the service call.
o Pull model: it is the reverse of the push model. It occurs when the lower layer fetches available
information from the higher layer at its own discretion.
Decouple adjacent layers.

o For top-down communication, where requests travel top-down, we can use one-way coupling (i.e, upper
layer is aware of the next lower layer, but the lower layer is unaware of the identity of its users) here
return values are sufficient to transport the results in the reverse direction.
o For bottom-up communication, you can use callbacks and still preserve a top-down one way coupling.
Here the upper layer registers callback functions with the lower layer.
o We can also decouple the upper layer from the lower layer to a certain degree using object oriented
techniques.
Design an error handling strategy
o An error can either be handled in the layer where it occurred or be passed to the next higher layer. o As
a rule of thumb, try to handle the errors at the lowest layer possible.

3. Explain the structure, dynamics and consequences of whole part.
Whole-part design pattern helps with the aggregation of components that together form a semantic unit.
An aggregate component, the whole, encapsulates its constituent components, the parts, organizes their
collaboration, and provides a common interface to its functionality. Direct access to the parts is not
possible.

Structure
The Whole-Part pattern introduces two types of participant:
Whole
Whole object represents an aggregation of smaller objects, which we call parts. It forms a semantic
grouping of its parts in that it co ordinates and organizes their collaboration. Some methods of whole may
be just place holder for specific part services when such a method is invoked the whole only calls the
relevant part services, and returns the result to the client. Each part object is embedded in exactly one
whole. Two or more parts cannot share the same part. Each part is created and destroyed within the life
span of the whole.

Dynamics:

The following scenario illustrates the behavior of a Whole-Part structure. We use the two-dimensional
rotation of a line within a CAD system as an example. The line acts as a Whole object that contains two
points p and q as Parts. A client asks the line object to rotate around the point c and passes the rotation
angle as an argument. The rotation of a point p around a center c with an angle a

The scenario consists of four phases:
1. A client invokes the rotate method of the line L and passes the angle a and the rotation center c as
arguments.
2. The line L calls the rotate method of the point p.
3. The line L calls the rotate method of the point q.
4. The line L redraws itself using the new positions of p I and q I as endpoints.

Consequences:
The whole-part pattern offers several Benefits:
Changeability of parts:
Part implementations may even be completely exchanged without any need to modify other parts or
clients.
Separation of concerns:
Each concern is implemented by a separate part.
Reusability in two aspects:
Parts of a whole can be reused in other aggregate objects
Encapsulation of parts within a whole prevents clients from ‘scattering’ the use of part objects all over its
source code.

The whole-part pattern suffers from the following Liabilities:

Lower efficiency through indirection
Since the Whole builds a wrapper around its Parts, it introduces an additional level of indirection between
a client request and the Part that fulfils it.
Complexity of decomposition into parts.
An appropriate composition of a Whole from different Parts is often hard to find, especially when a
bottom-up approach is applied.

4 a. Explain the variants of proxy.
Remote Proxy
Clients of remote components should be scheduled from network addresses and IPC protocols.
Protection proxy:
Components must be protected from unauthorized access.
Cache proxy:
Multiple local clients can share results from remote components.
Synchronization proxy:
Multiple simultaneous accesses to a component must be synchronized.
Counting proxy:
Accidental deletion of components must be prevented or usage statistics collected
Virtual proxy:
Processing or loading a component is costly while partial information about the component may be
sufficient.
Firewall proxy:
Local clients should be protected from the outside world.

4. b. Explain the structure of master slave
The Master-Slave design pattern supports fault tolerance, parallel computation and computational
accuracy. A master component distributes work to identical slave components and computes a final result
from the results these slaves return.
Master component:
Provides theservice that can be solved by applying the ‘divide and conquer’ principle.
It implements functions for partitioning work into several equal subtasks, starting and controlling
their processing and computing a final result from all the results obtained.
It also maintains references to all slaves instances to which it delegates the processing of subtasks.
Slave component:
Provides a sub-service that can process the subtasks defined by the master
There are at least two instances of the slave component connected to the master.

The structure defined by the Master-Slave pattern is illustrated by the following OMT diagram.

5. Explain the structure and implementation steps and consequences of access control.
Proxy design pattern makes the clients of a component communicate with a representative rather than to
the component itself. Introducing such a place holder can serve many purposes, including enhanced
efficiency, easier access and protection from unauthorized access.
Structure:
Original
Implements a particular service
Client
Responsible for specific task
To do this, it involves the functionality of the original in an indirect way by accessing the proxy.
Proxy
Offers same interface as the original, and ensures correct access to the original. To achieve this, the
proxy maintains a reference to the original it represents.
Usually there is one-to-one relationship b/w the proxy and the original.
Abstract original
Provides the interface implemented by the proxy and the original. i.e, serves as abstract base class for the
proxy and the original.

Implementation:
1. Identify all responsibilities for dealing with access control to a component Attach these
responsibilities to a separate component the proxy.
2. If possible introduce an abstract base class that specifies the common parts of the interfaces of
both the proxy and the original.
Derive the proxy and the original from this abstract base. 3. Implement the proxy’s functions
To this end check the roles specified in the first step
4. Free the original and its client from responsibilities that have migrated into the proxy.
5. Associate the proxy and the original by giving the proxy a handle to the original. This handle may be
a pointer a reference an address an identifier, a socket, a port, and so on.
6. Remove all direct relationships between the original and its client Replace them by analogous
relationships to the proxy.

Consequences:
The Proxy pattern provides the following Benefits:
Enhanced efficiency and lower cost
The Virtual Proxy variant helps to implement a 'load-on-demand' strategy. This allows you to avoid
unnecessary loads from disk and usually speeds up your application
Decoupling clients from the location of server components
By putting all location information and addressing functionality into a Remote Proxy variant, clients are
not affected by migration of servers or changes in the networking infrastructure. This allows client code
to become more stable and reusable.
Separation of housekeeping code from functionality.
A proxy relieves the client of burdens that do not inherently belong to the task the client is to perform.
The Proxy pattern has the following Liabilities:
Less efficiency due to indirection

All proxies introduce an additional layer of indirection.
Over kill via sophisticated strategies
Be careful with intricate strategies for caching or loading on demand they do not always pay.
6. a. Explain dynamics of master slave
The scenario comprises six phases:

 A client requests a service from the master.
 The master partitions the task into several equal sub-tasks.
 The master delegates the execution of these sub-tasks to several slave instances, starts their

execution and waits for the results they return.
 The slaves perform the processing of the sub-tasks and return the results of their computation

back to the master.
 The master computes a final result for the whole task from the partial results received from the

slaves.

 The master returns this result to the client.

6. b. List uses of architecture documentation and explain creating team structure
Uses of Architecture Documentation:
1. Architecture documentation is both prescriptive and descriptive.
2. All of this tells us that different stakeholders for the documentation have different needs—different
kinds of information, different levels of information, and different treatments of information.
3. Documentation facilitates that communication. Some examples of architectural stakeholders and the
information they might expect to find in the documentation.
4. Documentation that was easy to write but is not easy to read will not be used, and "easy to read" is in
the eye of the beholder—or in this case, the stakeholder.
Forming team structure
Once the architecture is accepted we assign teams to work on different portions of the design and
development.

 Once architecture for the system under construction has been agreed on, teams are allocated to
work on the major modules and a work breakdown structure is created that reflects those teams.

 Each team then creates its own internal work practices.
 For large systems, the teams may belong to different subcontractors.
 Teams adopt “work practices’ including

o Team communication via website/bulletin boards o Naming conventions for files
o Configuration/revision control system
o o Quality assurance and testing procedure

The teams within an organization work on modules, and thus within team high level of communication is
necessary.

7. Explain ADD in detail.
A method for designing an architecture to satisfy both quality requirements and functional requirements is
called attribute-driven design (ADD). ADD takes as input a set of quality attribute scenarios and employs
knowledge about the relation between quality attribute achievement and architecture in order to design the
architecture.
The output of ADD is the first several levels of a module decomposition view of an architecture and other
views as appropriate.
Sample Example
Design a product line architecture for a garage door opener with a larger home information system the
opener is responsible for raising and lowering the door via a switch, remote control, or the home

information system. It is also possible to diagnose problems with the opener from within the home
information system.
o Input to ADD: a set of requirements
o Functional requirements as use cases
o Constraints
o Quality requirements expressed as system specific quality scenarios
o Scenarios for garage door system
o Device and controls for opening and closing the door are different for the various products in the
product line
o The processor used in different products will differ
o If an obstacle is (person or object) is detected by the garage door during descent, it must stop within 0.1
second
o The garage door opener system needs to be accessible from the home information system for diagnosis
and administration.
o It should be possible to directly produce an architecture that reflects this protocol

ADD STEPS
Steps involved in attribute driven design (ADD)
1. Choose the module to decompose

o Start with entire system
o Inputs for this module need to be available
o Constraints, functional and quality requirements
2. Refine the module
a) Choose architectural drivers relevant to this decomposition b) Choose architectural pattern that satisfies
these drivers
c) Instantiate modules and allocate functionality from use cases representing using multiple views d)
Define interfaces of child modules
e) Verify and refine use cases and quality scenarios
3. Repeat for every module that needs further decomposition

8. a. Explain documentation of views.
Primary presentation- elements and their relationships, contains main information about these system ,
usually graphical or tabular.
Element catalog- details of those elements and relations in the picture,
Context diagram- how the system relates to its environment
Variability guide- how to exercise any variation points a variability guide should include documentation
about each point of variation in the architecture, including
o The options among which a choice is to be made
o The binding time of the option. Some choices are made at design time, some at build time, and others at
runtime.
Architecture background –why the design reflected in the view came to be? an architecture background
includes
o rationale, explaining why the decisions reflected in the view were made and why alternatives were
rejected
o analysis results, which justify the design or explain what would have to change in the face of a
modification
o assumptions reflected in the design
Glossary of terms used in the views, with a brief description of each.
Other information includes management information such as authorship, configuration control data, and
change histories. Or the architect might record references to specific sections of a requirements document
to establish traceability.

8. b. Explain documentation across views.

HOW THE DOCUMENTATION IS ORGANIZED TO SERVE A STAKEHOLDER
Every suite of architectural documentation needs an introductory piece to explain its organization to a
novice stakeholder and to help that stakeholder access the information he or she is most interested in.
View Catalog
A view catalog is the reader's introduction to the views that the architect has chosen to include in the suite
of documentation.

View Template
A view template is the standard organization for a view. It helps a reader navigate quickly to a section of
interest, and it helps a writer organize the information and establish criteria for knowing how much work
is left to do.
WHAT THE ARCHITECTURE IS
This section provides information about the system whose architecture is being documented, the relation
of the views to each other, and an index of architectural elements.
System Overview
This is a short prose description of what the system's function is, who its users are, and any important
background or constraints.
Mapping between Views
Since all of the views of an architecture describe the same system, it stands to reason that any two views
will have much in common.
Element List
The element list is simply an index of all of the elements that appear in any of the views, along with a
pointer to where each one is defined. This will help stakeholders look up items of interest quickly.
Project Glossary
The glossary lists and defines terms unique to the system that have special meaning. A list of acronyms,
and the meaning of each, will also be appreciated by stakeholders. If an appropriate glossary already
exists, a pointer to it will suffice here.
WHY THE ARCHITECTURE IS THE WAY IT IS: RATIONALE
Cross-view rationale explains how the overall architecture is in fact a solution to its requirements. One
might use the rationale to explain:

 The implications of system-wide design choices on meeting the requirements or satisfying
constraints.

 The effect on the architecture when adding a foreseen new requirement or changing an existing
one.

 The constraints on the developer in implementing a solution.
 Decision alternatives that were rejected.

In general, the rationale explains why a decision was made and what the implications are in changing it.

