I nternal Assessment Test 2—- May 2017

Sub: Softwar e Ar chitectures Code: 101 S81
Max VI A
Date: | 08/05/2017 | Duration: | 90 mins | Marks: | 50 Sem: & B Branch: |SE

Answer any 5 questions. All questions carry equal marks.

1. a What arethe key concepts of availability tactics? Explain the same with an example.

Saln.

A failure occurs when the system no longer delivers a service that is consistent with its
specification; this failure is observable by the system's users. A fault (or combination
of faults) has the potential to cause afailure.

= ™
Availability
Fault Detection Recovery- Recovery- Prevantion
ration Reintroduction
and Repair
—_ —
Fault Fault
Masked
oar
Ping/Echo Voting Shadow Removal from Repair
Heartbeat Active State - 5"“‘1'“: Made
Exception Redundancy Resynchronization Transactions
Passive Rollback Process Monitor
Redundancy
Spare
p 4

Fault detection-Three widely used tactics for recognizing faults are ping/echo,
heartbeat, and exceptions.

Ping/echo. One component issues a ping and expects to receive back an echo, within a
predefined time, from the component under scrutiny. This can be used within a group
of components mutually responsible for one task.

Heartbeat (dead man timer). In this case one component emits a heartbeat message
periodically and another component listens for it. If the heartbeat fails, the originating
component is assumed to have failed and a fault correction component is notified.

Exceptions. One method for recognizing faults is to encounter an exception, which is
raised when one of the fault classesis recognized. The exception handler typically
executes in the same process that introduced the exception.

Fault recovery-Fault recovery consists of preparing for recovery and making the
system repair. Some preparation and repair tactics follow.

Voting. Processes running on redundant processors each take equivalent input and
compute a simple output value that is sent to a voter. If the voter detects deviant
behavior from a single processor, it fails it. The voting algorithm can be "majority

Marks
[10]

rules' or "preferred component” or some other agorithm. This method is used to
correct faulty operation of algorithms or failure of a processor and is often used in
control systems.

Active redundancy (hot restart). All redundant components respond to events in
paralel. Consequently, they are all in the same state. The response from only one
component is used (usually the first to respond), and the rest are discarded. When a
fault occurs, the downtime of systems using this tactic is usually milliseconds since
the backup is current and the only time to recover is the switching time. Active
redundancy is often used in a client/server configuration, such as database
management systems, where quick responses are necessary even when a fault occurs.
In ahighly available distributed system, the redundancy may be in the communication
paths.

Passve redundancy (warm restart/dual redundancy/triple redundancy). One
component (the primary) responds to events and informs the other components (the
standbys) of state updates they must make. When a fault occurs, the system must first
ensure that the backup state is sufficiently fresh before resuming services. This
approach is aso used in control systems, often when the inputs come over
communication channels or from sensors and have to be switched from the primary to
the backup on failure.

Spare. A standby spare computing platform is configured to replace many different
failed components. It must be rebooted to the appropriate software configuration and
have its state initialized when a failure occurs. Making a checkpoint of the system
state to a persistent device periodicaly and logging all state changes to a persistent
device allows for the spare to be set to the appropriate state.

Shadow operation. A previoudly failed component may be run in "shadow mode" for a
short time to make sure that it mimics the behavior of the working components before
restoring it to service.

State resynchronization. The passive and active redundancy tactics require the
component being restored to have its state upgraded before its return to service. The
updating approach will depend on the downtime that can be sustained, the size of the
update, and the number of messages required for the update

Checkpoint/rollback. A checkpoint is a recording of a consistent state created either
periodically or in response to specific events. Sometimes a system fails in an unusual
manner, with a detectably inconsistent state.

Fault prevention-

Removal from service. This tactic removes a component of the system from
operation to undergo some activities to prevent anticipated failures.

Transactions. A transaction is the bundling of several sequential steps such that the
entire bundle can be undone at once. Transactions are used to prevent any data from
being affected if one step in a process fals and also to prevent collisions among
several simultaneous threads accessing the same data.

Process monitor. Once a fault in a process has been detected, a monitoring process
can delete the nonperforming process and create a new instance of it, initialized to

2.

some appropriate state as in the spare tactic.
a. Explain business qualities.

Soln. In addition to the qualities that apply directly to a system, a number of business quality goals
frequently shape a system's architecture. These goals center on cost, schedule, market, and
marketing considerations. Each suffers from the same ambiguity that system qualities have,
and they need to be made specific with scenarios in order to make them suitable for
influencing the design process and to be made testable.

Time to market. If there is competitive pressure or a short window of opportunity for
a system or product, development time becomes important. This in turn leads to
pressure to buy or otherwise re-use existing elements. Time to market is often reduced
by using prebuilt elements such as commercia off-the-shelf (COTS) products or
elements re-used from previous projects. The ability to insert or deploy a subset of the
system depends on the decomposition of the system into elements.

Cost and benefit. The development effort will naturally have a budget that must not
be exceeded. Different architectures will yield different development costs. An
architecture that is highly flexible will typically be costlier to build than one that is
rigid (although it will be less costly to maintain and modify).

Projected lifetime of the system. If the system is intended to have a long lifetime,
modifiability, scalability, and portability become important. But building in the
additional infrastructure (such as a layer to support portability) will usually
compromise time to market. On the other hand, a modifiable, extensible product is
more likely to survive longer in the marketplace, extending its lifetime.

Targeted market. For general-purpose (mass-market) software, the platforms on
which a system runs as well as its feature set will determine the size of the potential
market. Thus, portability and functionality are key to market share. Other qualities,
such as performance, reliability, and usability also play arole.

Integration with legacy systems. If the new system has to integrate with existing
systems, care must be taken to define appropriate integration mechanisms. This
property is clearly of marketing importance but has substantial architectural
implications.

b. Explain Testability tactics
Soln. The goal of tactics for testability is to allow for easier testing when an increment of software
development is completed. .
two categories of tactics for testing: providing input and capturing output, and interna
monitoring.

[5]

[5]

Testability

Manage Internal

Inp utput Monitoring
Completion ults
of an etected
Increment Record/Playback Bulr

Separate Interface nitors

from Implamentation

Specialized Access

Routines/Interfaces

. S
INPUT/OUTPUT

There are three tactics for managing input and output for testing.

Recor d/playback. Record/playback refers to both capturing information crossing an
interface and using it as input into the test harness. The information crossing an
interface during normal operation is saved in some repository and represents output
from one component and input to another. Recording this information alows test
input for one of the components to be generated and test output for later comparison to
be saved.

Separate interface from implementation. Separating the interface from the
implementation allows substitution of implementations for various testing purposes.
Stubbing implementations allows the remainder of the system to be tested in the
absence of the component being stubbed. Substituting a specialized component allows
the component being replaced to act as atest harness for the remainder of the system.

Specialize access routes/interfaces. Having specialized testing interfaces allows the
capturing or specification of variable values for a component through atest harness as
well as independently from its normal execution. For example, metadata might be
made available through a specialized interface that atest harness would use to drive its
activities. Having a hierarchy of test interfaces in the architecture means that test cases
can be applied at any level in the architecture and that the testing functionality is in
place to observe the response.

INTERNAL MONITORING

A component can implement tactics based on internal state to support the testing process.

Built-in monitors. The component can maintain state, performance load, capacity,
security, or other information accessible through an interface. This interface can be a
permanent interface of the component or it can be introduced temporarily via an
instrumentation technique such as aspect-oriented programming or preprocessor
macros. A common technique is to record events when monitoring states have been
activated. Monitoring states can actually increase the testing effort since tests may
have to be repeated with the monitoring turned off. Increased visibility into the

activities of the component usually more than outweigh the cost of the additional
testing.

3. a WhatisQuality attribute scenario? List the parts of such a scenario.

Saln.

General scenarios provide a framework for generating a large number of generic, system-
independent, quality-attribute-specific scenarios. Each is potentially but not necessarily
relevant to the system you are concerned with.Making a general scenario system specific
means tranglating it into concrete terms for the particular system.
Source of stimulus. This is some entity (a human, a computer system, or any other
actuator) that generated the stimulus.

Stimulus. The stimulus is a condition that needs to be considered when it arrives at a
system.

Environment. The stimulus occurs within certain conditions. The system may be in an
overload condition or may be running when the stimulus occurs, or some other
condition may be true.

Artifact. Some artifact is stimulated. This may be the whole system or some pieces of
it.

Response. The response is the activity undertaken after the arrival of the stimulus.

Response measure. When the response occurs, it should be measurable in some
fashion so that the requirement can be tested.

b. Explain how faults are detected, recovered and prevented

Soln.

A failure occurs when the system no longer delivers a service that is consistent with its
specification; this failure is observable by the system's users. A fault (or combination
of faults) has the potential to cause afailure.

F- i
Availability
Fault Detection Recovery- Racovery- Prevantion
P ration Reintroduction
and Repair
— —
Fault Fault
Masked
or
Ping/Echo Voting Shadow Removal from Repair
Heartbeat Active State - Skl Made
Exception Redundancy Resynchronization Transactions
Passive Rolloack Process Monitor
Redundancy
Spare
b >

Fault detection- Three widely used tactics for recognizing faults are ping/echo,
heartbeat, and exceptions.

Ping/echo. One component issues a ping and expects to receive back an echo, within a
predefined time, from the component under scrutiny. This can be used within a group

[2]

(8]

of components mutually responsible for one task.

Heartbeat (dead man timer). In this case one component emits a heartbeat message
periodically and another component listens for it. If the heartbeat fails, the originating
component is assumed to have failed and afault correction component is notified.

Exceptions. One method for recognizing faults is to encounter an exception, which is
raised when one of the fault classes is recognized. The exception handler typically
executes in the same process that introduced the exception.

Fault recovery- Fault recovery consists of preparing for recovery and making the
system repair. Some preparation and repair tactics follow.

Voting. Processes running on redundant processors each take equivalent input and
compute a simple output value that is sent to a voter. If the voter detects deviant
behavior from a single processor, it fails it. The voting algorithm can be "majority
rules' or "preferred component” or some other agorithm. This method is used to
correct faulty operation of algorithms or failure of a processor and is often used in
control systems.

Active redundancy (hot restart). All redundant components respond to events in
parallel. Consequently, they are all in the same state. The response from only one
component is used (usually the first to respond), and the rest are discarded. When a
fault occurs, the downtime of systems using this tactic is usually milliseconds since
the backup is current and the only time to recover is the switching time. Active
redundancy is often used in a client/server configuration, such as database
management systems, where quick responses are necessary even when a fault occurs.
In ahighly available distributed system, the redundancy may be in the communication
paths.

Passve redundancy (warm restart/dual redundancy/triple redundancy). One
component (the primary) responds to events and informs the other components (the
standbys) of state updates they must make. When a fault occurs, the system must first
ensure that the backup state is sufficiently fresh before resuming services. This
approach is also used in control systems, often when the inputs come over
communication channels or from sensors and have to be switched from the primary to
the backup on failure.

Spare. A standby spare computing platform is configured to replace many different
failed components. It must be rebooted to the appropriate software configuration and
have its state initialized when a failure occurs. Making a checkpoint of the system
state to a persistent device periodicaly and logging all state changes to a persistent
device allows for the spare to be set to the appropriate state.

Shadow operation. A previoudly failed component may be run in "shadow mode" for a
short time to make sure that it mimics the behavior of the working components before
restoring it to service.

State resynchronization. The passive and active redundancy tactics require the
component being restored to have its state upgraded before its return to service. The
updating approach will depend on the downtime that can be sustained, the size of the

update, and the number of messages required for the update

Checkpoint/rollback. A checkpoint is a recording of a consistent state created either
periodically or in response to specific events. Sometimes a system fails in an unusual
manner, with a detectably inconsistent state.

Fault prevention-

Removal from service. This tactic removes a component of the system from
operation to undergo some activities to prevent anticipated failures.

Transactions. A transaction is the bundling of several sequential steps such that the
entire bundle can be undone at once. Transactions are used to prevent any data from
being affected if one step in a process fails and aso to prevent collisions among
severa simultaneous threads accessing the same data.

Process monitor. Once afault in a process has been detected, a monitoring process can delete
the nonperforming process and create a new instance of it, initialized to some appropriate state
asin the spare tactic.

4. a Explain Performance and Security scenarios with a neat block diagram [10]

Soln. Performance scenarios

Performance is about timing. Events (interrupts, messages, requests from users, or the
passage of time) occur, and the system must respond to them. There are a variety of
characterizations of event arrival and the response but basically performance is
concerned with how long it takes the system to respond when an event occurs.

One of the things that make performance complicated is the number of event sources
and arrival patterns. An arrival pattern for events may be characterized as either
periodic or stochastic. For example, a periodic event may arrive every 10
milliseconds. Periodic event arrival is most often seen in real-time systems. Stochastic
arrival means that events arrive according to some probabilistic distribution. Events
can aso arrive sporadically, that is, according to a pattern not capturable by either
periodic or stochastic characterizations.

A performance scenario begins with arequest for some service arriving at the system.
Satisfying the request requires resources to be consumed. While this is happening the
system may be simultaneously servicing other requests.

The response of the system to a stimulus can be characterized by latency, deadlines in
processing, the throughput of the system, the number of events not processed because
the system was too busy to respond, and the data that was lost because the system was
too busy.

- Artifact:
Stimulus: System Response:
Initiate Transactions
Transactions Envi Are Processed
Source: Uﬂ;g::nmant. Response
Users Normal w;asure.
! ith Average
Operations Latency
of Two
Seconds

Source of stimulus. The stimuli arrive either from external (possibly multiple) or
internal sources. In our example, the source of the stimulusis a collection of users.

Stimulus. The stimuli are the event arrivals. The arrival pattern can be characterized as
periodic, stochastic, or sporadic. In our example, the stimulus is the stochastic
initiation of 1,000 transactions per minute.

Artifact. The artifact is always the system's services, asit isin our example.

Environment. The system can be in various operational modes, such as normal,
emergency, or overload. In our example, the system isin normal mode.

Response. The system must process the arriving events. This may cause a change in
the system environment (e.g., from normal to overload mode). In our example, the
transactions are processed.

Response measure. The response measures are the time it takes to process the arriving
events (latency or a deadline by which the event must be processed), the variation in
this time (jitter), the number of events that can be processed within a particular time
interval (throughput), or a characterization of the events that cannot be processed
(miss rate, data loss). In our example, the transactions should be processed with an
average latency of two seconds.

Security scenarios

Security is a measure of the system's ability to resist unauthorized usage while still
providing its services to legitimate users. An attempt to breach security is called an
attack and can take a number of forms. It may be an unauthorized attempt to access
data or services or to modify data, or it may be intended to deny services to legitimate
users.

Attacks, often occasions for wide media coverage, may range from theft of money by
electronic transfer to modification of sensitive data, from theft of credit card numbers
to destruction of files on computer systems, or to denial-of-service attacks carried out
by worms or viruses.

. !
fi— TN
| Data within =
Stimulus: the System | Response:
Tries to System
Modify aintains
Source: Information Egzgl?ﬂme nt: Audit Trail E'gspnns‘e
GG n-eﬂ"}; Normal [:: Easgtm.
Identified Operations T
Individual Data Is
Restored
within a
Day

Source of stimulus. The source of the attack may be either a human or another system.
It may have been previously identified (either correctly or incorrectly) or may be
currently unknown. If the source of the attack is highly motivated (say politically
motivated), then defensive measures such as "We know who you are and will
prosecute you" are not likely to be effective; in such cases the motivation of the user
may be important. If the source has access to vast resources (such as a government),
then defensive measures are very difficult. The attack itself is unauthorized access,
modification, or denia of service.

The difficulty with security is allowing access to legitimate users and determining
legitimacy. If the only goal were to prevent access to a system, disallowing al access
would be an effective defensive measure.

Stimulus. The stimulus is an attack or an attempt to break security. We characterize
this as an unauthorized person or system trying to display information, change and/or
delete information, access services of the system, or reduce availability of system
services. In Figure 4.6, the stimulus is an attempt to modify data.

Artifact. The target of the attack can be either the services of the system or the data
within it. In our example, the target is data within the system.

Environment. The attack can come when the system is either online or offline, either
connected to or disconnected from a network, either behind a firewall or open to the
network.

Response. Using services without authorization or preventing legitimate users from
using services is a different goal from seeing sensitive data or modifying it. Thus, the
system must authorize legitimate users and grant them access to data and services, at
the same time regjecting unauthorized users, denying them access, and reporting
unauthorized access. Not only does the system need to provide access to legitimate
users, but it needs to support the granting or withdrawing of access. One technique to
prevent attacks is to cause fear of punishment by maintaining an audit trail of
modifications or attempted accesses. An audit trail is also useful in correcting from a
successful attack. In Figure 4.6, an audit trail is maintained.

Response measure. Measures of a system's response include the difficulty of mounting
various attacks and the difficulty of recovering from and surviving attacks. In our
example, the audit trail alows the accounts from which money was embezzled to be
restored to their original state. Of course, the embezzler still has the money, and he
must be tracked down and the money regained, but this is outside of the realm of the
computer system.

5. a Explandifferent templates for documentation interfaces. [10]

Soln. Aninterface is a boundary across which two independent entities meet and interact or
communicate with each other.

1. Interface identity

2. Resources provided

Section 2.C.a. Resource syntax
Section 2.C.b. Resource semantics
Section 2.C.c. Resource usage restrictions
Locally defined data types
Exception definitions

Variability provided

Quality attribute characteristics
Element requirements

Rationale and design issues
Usage guide

i o O

1. Interface identity. When an element has multiple interfaces, identify the individual
interfaces to distinguish them. This usually means naming them. You may also need
to provide aversion number.

2. Resources provided. The heart of an interface document is the resources that the
element provides. Define them by giving their syntax, their semantics, and any
restrictions on their usage.At a minimum, the interface is named; the architect can aso
specify signature information.

o Resource syntax. This is the resource's signature. The signature includes any
information another program will need to write a syntactically correct program
that uses the resource. The signature includes the resource name, names and
logical datatypes of arguments (if any), and so forth.

o Resource semantics. This describes the result of invoking the resource. It might
include

o -assignment of values to data that the actor invoking the resource can access. It
might be as simple as setting the value of a return argument or as far-reaching as
updating a central database.

- events that will be signaled or messages that will be sent as a result of using the
resource.

- how other resources will behave in the future as the result of using this resource.
For example, if you ask aresource to destroy an object, trying to access that object in

the future through other resources will produce quite a different outcome (an error).

- humanly observable results. These are prevaent in embedded systems; for
example, calling a program that turns on a display in a cockpit has a very observable
effect: The display comes on.

Resource usage restrictions. Under what circumstances may this resource be used?
Perhaps data must be initialized before it can be read, or a particular method cannot be
invoked unless another isinvoked first.

Figure Interfacesin UML

& A c-cinteifa.cew
—e | 0 p------ I
1
<<subsystem>>
o c
L8y Class —@Interface ----[> Realizes

Data type definitions. If any interface resources employ a data type other than one
provided by the underlying programming language, the architect needs to
communicate the definition of that datatype. If it is defined by another element, then a
reference to the definition in that element's documentation is sufficient.

Exception definitions. These describe exceptions that can be raised by the resources
on the interface. Since the same exception might be raised by more than one resource,
it is often convenient to simply list each resource's exceptions but define them in a
dictionary collected separately. This section is that dictionary. Common exception-
handling behavior can aso be defined here.

. Variability provided by the interface. Does the interface allow the element to be
configured in some way? These configuration parametersand how they affect the
semantics of the interface must be documented.

. Quality attribute characteristics of the interface. The architect needs to document
what quality attribute characteristics the interface makes known to the element's users.
This information may be in the form of constraints on implementations of elements
that will realize the interface. Which qualities you choose to concentrate on and make
promises about will depend on context.

Element requirements. What the element requires may be specific, named resources
provided by other elements. The documentation obligation is the same as for resources
provided: syntax, semantics, and any usage restrictions.

Rationale and design issues. As with rationale for the architecture at large, the

architect should record the reasons for an element's interface design. The rationale
should explain the motivation behind the design, constraints and compromises, what
alternative designs were considered and rejected, and any insight the architect has
about how to change the interface in the future.

9. Usage guide. Item 2 and item 7 document an element's semantic information on a per
resource basis. This sometimes falls short of what is needed. In some cases semantics
need to be reasoned about in terms of how a broad number of individual interactions
interrelate. Essentially, aprotocol is involved that is documented by considering a
sequence of interactions.

6. a Listthestepsof ADD. [2]

Soln. 1. Choose the module to decompose. The module to start with is usually the whole system.
All required inputs for this module should be available (constraints, functional
requirements, quality requirements).

2. Refine the module according to these steps:

a. Choose the architectural drivers from the set of concrete quality scenarios and
functional requirements. This step determines what is important for this
decomposition.

b. Choose an architectural pattern that satisfies the architectural drivers. Create (or
select) the pattern based on the tactics that can be used to achieve the drivers.
[dentify child modules required to implement the tactics.

c. Instantiate modules and allocate functionality from the use cases and represent
using multiple views.

d. Define interfaces of the child modules. The decomposition provides modules and
constraints on the types of module interactions. Document this information in
the interface document for each module.

e. Verify and refine use cases and quality scenarios and make them constraints for the
child modules. This step verifies that nothing important was forgotten and
prepares the child modules for further decomposition or implementation.

3. Repeat the steps above for every module that needs further decomposition.

b. Explain all the steps involved in refining the module. [8]

Soln. 2.a Choose the Architectural Drivers
architectural drivers are the combination of functional and quality requirements that
"shape" the architecture or the particular module under consideration. The drivers will
be found among the top-priority requirements for the module.

The determination of architectural drivers is not aways a top-down process.
Sometimes detailed investigation is required to understand the ramifications of
particular requirements. For example, to determine if performance is an issue for a
particular system configuration, a prototypical implementation of a piece of the
system may be required. In our example, determining that the performance

requirement is an architectural driver requires examining the mechanics of a garage
door and the speed of the potential processors.

2.b Choose an Architectural Pattern

for each quality there are identifiable tactics (and patterns that implement these
tactics) that can be used in an architecture design to achieve a specific quality. Each
tactic is designed to realize one or more quality attributes, but the patterns in which
they are embedded have an impact on other quality attributes

The goal of step 2b isto establish an overall architectural pattern consisting of module
types. The pattern satisfies the architectural drivers and is constructed by composing
selected tactics. Two main factors guide tactic selection. The first is the drivers
themselves. The second is the side effects that a pattern implementing a tactic has on
other qualities.

we see performance and modifiability as the critical quality attributes for available
tactics. The modifiability tactics are "localize changes," "prevent the ripple effect,”
and "defer binding time." Moreover, since our modifiability scenarios are concerned
primarily with changes that will occur during system design, the primary tactic is
"localize changes." We choose semantic coherence and information hiding as our
tactics and combine them to define virtual machines for the affected areas. The
performance tactics are "resource demand” and "resource arbitration.” We choose one
example of each: "increase computational efficiency” and "choose scheduling policy.”
Thisyields the following tactics:

Semantic coherence and information hiding. Separate responsibilities dealing with
the user interface, communication, and sensors into their own modules. We call these
modules virtual machines and we expect all three to vary because of the differing
products that will be derived from the architecture. Separate the responsibilities
associated with diagnosis as well.

Increase computational efficiency. The performance-critical computations should be
made as efficient as possible.

Schedule wisely. The performance-critical computations should be scheduled to
ensure the achievement of the timing deadline.

2.c Instantiate Modules and Allocate Functionality Using Multiple Views

we identified a non-performance-critical computation running on top of a virtual
machine that manages communication and sensor interactions. The software running
on top of the virtual machine is typically an application. In a concrete system we will
normally have more than one module. There will be one for each "group” of
functionality; these will be instances of the types shown in the pattern. Our criterion
for alocating functionality is similar to that used in functionality-based design
methods, such as most object-oriented design methods.

Allocate functionality-Applying use cases that pertain to the parent module helps the
architect gain a more detailed understanding of the distribution of functionality. This
also may lead to adding or removing child modules to fulfill all the functionality
required.

Assigning responsibilities to the children in a decomposition aso leads to the
discovery of necessary information exchange. This creates a producer/consumer
relationship between those modul es, which needs to be recorded

Represent the architecture with views- ADD uses three common views.

Module decomposition view. module decomposition view provides containers for
holding responsibilities as they are discovered. Mgor data flow relationships among
the modules are also identified through this view.

Concurrency view. In the concurrency view dynamic aspects of a system such as
parallel activities and synchronization can be modeled. This modeling helps to
identify resource contention problems, possible deadlock situations, data consistency
issues, and so forth. Modeling the concurrency in a system likely leads to discovery of
new responsibilities of the modules, which are recorded in the module view. It can
also lead to discovery of new modules, such as a resource manager, in order to solve
Issues of concurrent access to a scarce resource and the like.

To understand the concurrency in a system, the following use cases are illuminating:

- Two users doing similar things at the same time. This helps in recognizing
resource contention or data integrity problems. In our garage door example, one user
may be closing the door remotely while another is opening the door from a switch.

- One user performing multiple activities ssmultaneously. This helps to uncover
data exchange and activity control problems. In our example, a user may be
performing diagnostics while simultaneously ~ opening the door.

- Starting up the system. This gives a good overview of permanent running activities
in the system and how to initialize them. It a'so helps in deciding on an initialization
strategy, such as everything in parallel or everything in sequence or any other model.
In our example, does the startup of the garage door opener system depend on the
availability of the home information system? Is the garage door opener system always
working, waiting for asignal, or isit started and stopped with every door opening and
closing?

- Shutting down the system. This helps to uncover issues of cleaning up, such as
achieving and saving a consistent system state

Deployment view. If multiple processors or specialized hardware is used in a system,
additional responsibilities may arise from deployment to the hardware. Using a
deployment view helps to determine and design a deployment that supports achieving
the desired qualities. The deployment view results in the virtual threads of the
concurrency view being decomposed into virtual threads within a particular processor
and messages that travel between processors to initiate the next entry in the sequence
of actions. Thus, it is the basis for analyzing the network traffic and for determining
potential congestion.

2.d Define Interfaces of the Child Modules

For purposes of ADD, an interface of a module shows the services and properties

provided and required. This is different from a signature. It documents what others
can use and on what they can depend.

Anayzing and documenting the decomposition in terms of structure (module
decomposition view), dynamism (concurrency view), and runtime (deployment view)
uncovers the interaction assumptions for the child modules, which should be
documented in their interfaces. The module view documents

producers/consumers of information.
patterns of interaction that require modules to provide services and to use them.
The concurrency view documents

interactions among threads that lead to the interface of a module providing or using a
service.

the information that a component is active?or example, has its own thread running.

the information that a component synchronizes, sequentializes, and perhaps blocks
calls.

The deployment view documents
the hardware requirements, such as special-purpose hardware.

some timing requirements, such as that the computation speed of a processor has to be
at least 10 MIPS.

communication requirements, such as that information should not be updated more
than once every second.

2.e Verify and Refine Use Cases and Quality Scenarios as Constraints for the Child Modules

The steps enumerated thus far amount to a proposal for a module decomposition. This
decomposition must be verified and the child modules must be prepared for their own
decomposition.

Functional requirements

Each child module has responsibilities that derive partially from considering
decomposition of the functiona requirements. Those responsibilities can be transated
into use cases for the module. Another way of defining use cases is to split and refine
the parent use cases

In our example, the initial responsibilities for the garage door opener were to open and
close the door on request, either locally or remotely; to stop the door within 0.1 second
when an obstacle is detected; and to interact with the home information system and
support remote diagnostics. The responsibilities are decomposed into the following
functiona groups corresponding to the modules:

- User interface. Recognize user requests and translate them into the form expected by the
raising/lowering door module.

Raising/lowering door module. Control actuators to raise or lower the door. Stop the

7.

door when it reaches either fully open or fully closed.

Obstacle detection. Recognize when an obstacle is detected and either stop the descent
of the door or reverseit.

Communication virtual machine. Manage all communication with the home
information system.

Sensor/actuator virtual machine. Manage all interactions with the sensors and
actuators.

Scheduler. Guarantee that the obstacle detector will meet its deadlines.

Diagnosis. Manage the interactions with the home information system devoted to
diagnosis.

Constraints- Constraints of the parent module can be satisfied in one of the following
ways.

The decomposition satisfies the constraint. For example, the constraint of using a
certain operating system can be satisfied by defining the operating system as a child
module. The constraint has been satisfied and nothing more needs to be done.

The constraint is satisfied by a single child module. For example, the constraint of
using a specia protocol can be satisfied by defining an encapsulation child module for
the protocol. The constraint has been designated a child. Whether it is satisfied or not
depends on what happens with the decomposition of the child.

The constraint is satisfied by multiple child modules. For example, using the Web
requires two modules (client and server) to implement the necessary protocols.
Whether the constraint is satisfied depends on the decomposition and coordination of
the children to which the constraint has been assigned.

Quality scenarios- Quality scenarios also have to be refined and assigned to the child
modules.

A quality scenario may be completely satisfied by the decomposition without any
additional impact. It can then be marked as satisfied.

A quality scenario may be satisfied by the current decomposition with constraints on
child modules.

The decomposition may be neutral with respect to a quality scenario.

A quality scenario may not be satisfiable with the current decomposition. If it is an
important one, then the decomposition should be reconsidered. Otherwise, the
rationale for the decomposition not supporting this scenario must be recorded.

At the end of this step we have a decomposition of a module into its children, where each
child module has a collection of responsibilities; a set of use cases, an interface, quality
scenarios, and a collection of constraints. This is sufficient to start the next iteration of
decomposition.

a. Briefly explain the concept of documenting aview.

[10]

Soln.

Views

1. Primary Presentation of the View

[F —_— - | ll.

&, OR Textual varsion
= ol the primary
3¢ presentabon

2. Element Catalog
Section 2.A Elements and their properlies
Seclion 2.B Relations and their proparties
Section 2.C Elamant interfacas
Section 2.0 Element behavior

3. Context Diagram

4. Variability Guide

5. Architecture Background
Seclion 5.A Design rationale
Section 5.B Analysis of resulls
Seclion 5.C Assumptions

6. Glossary of Terms
7. Other Information

1. Primary presentation shows the elements and the relationships among them that
popul ate the view. The primary presentation should contain the information you wish to
convey about the system (in the vocabulary of that view) first. It should certainly
include the primary elements and relations of the view, but under some circumstances it
might not include all of them. For example, you may wish to show the elements and
relations that come into play during normal operation, but relegate error handling or

exceptional processing to the supporting documentation.

o The primary presentation isusually graphical. In fact, most graphical notations make their
contributions in the form of the primary presentation and little else. If the primary
presentation is graphical, it must be accompanied by a key that explains, or that points

to an explanation of, the notation or symbology used.

o Sometimes the primary presentation can be tabular; tables are often a superb way to
convey a large amount of information compactly. An example of a textual primary
presentation is the A-7E module decomposition view illustrated in Chapter 3. A textua
presentation still carries the obligation to present a terse summary of the most important

information in the view. In Section 9.6 we will discuss using UML for the primary
presentation.

2. Element catalog details at least those elements and relations depicted in the primary
presentation, and perhaps others. Producing the primary presentation is often what
architects concentrate on, but without backup information that explains the picture, it is
of little value For instance, if a diagram shows elements A, B, and C, there had better be
documentation that explains in sufficient detail what A, B, and C are, and their purposes
or the roles they play, rendered in the vocabulary of the view. For example, a module
decomposition view has elements that are modules, relations that are a form of "is part
of," and properties that define the responsibilities of each module. A process view has
elements that are processes, relations that define synchronization or other process-
related interaction, and properties that include timing parameters.

3. Context diagram shows how the system depicted in the view relates to its environment
in the vocabulary of the view. For example, in a component-and-connector view you
show which component and connectors interact with external components and
connectors, viawhich interfaces and protocols.

4. Variability guideshows how to exercise any variation points that are a part of the
architecture shown in this view. In some architectures, decisions are left unbound until a
later stage of the development process, and yet the architecture must still be
documented.

- the options among which a choice is to be made. In a module view, the options are the
various versions or parameterizations of modules. In a component-and-connector view,
they might include constraints on replication, scheduling, or choice of protocol. In an
allocation view, they might include the conditions under which a software element
would be allocated to a particular processor.

- the binding time of the option. Some choices are made at design time, some at build time,
and others at runtime.

5. Architecture background explains why the design reflected in the view came to be. The
goal of this section is to explain to someone why the design is asiit is and to provide a
convincing argument that it is sound. An architecture background includes

- rationale, explaining why the decisions reflected in the view were made and why
alternatives were rejected.

- analysis results, which justify the design or explain what would have to change in the face
of amodification.

- assumptions reflected in the design.
6. Glossary of terms used in the views, with a brief description of each.

7. Other information. The precise contents of this section will vary according to the
standard practices of your organization. They might include management information
such as authorship, configuration control data, and change histories. Or the architect
might record references to specific sections of a requirements document to establish
traceability. Strictly speaking, information such as thisis not architectural. Nevertheless,

it is convenient to record it aongside the architecture, and this section is provided for
that purpose. In any case, the first part of this section must detail its specific contents.

a. Explain with aneat diagram, the evolutionary delivery life cycle model.

- Severad life-cycle models exist in the literature, but one that puts architecture squarely in
the middle of thingsisthe Evolutionary Delivery Life Cycle model shown in Figure

- Theintent of this model isto get user and customer feedback and iterate through severa
releases before the final release. The model aso allows the adding of functionality with
each iteration and the delivery of a limited version once a sufficient set of features has
been devel oped.

- The life-cycle model shows the design of the architecture as iterating with preliminary
requirements analysis. you cannot begin the design until you have some idea of the
system requirements. On the other hand, it does not take many requirements in order for
design to begin.

- An architecture is "shaped" by some collection of functional, quality, and business
requirements. We call these shaping requirements architectural driversand we see
examples of them in our case studies

- To determine the architectural drivers, identify the highest priority business goals. There
should be relatively few of these. Turn these business goals into quality scenarios or use
cases. From this list, choose the ones that will have the most impact on the architecture.
These are the architectural drivers, and there should be fewer than ten.

- Once the architectural drivers are known, the architectural design can begin. The
requirements analysis process will then be influenced by the questions generated during
architectural design?one of the reverse-direction arrows shown in figure

Software
Concepl
Preliminary Deliver
»| Pequiraments [+ Final
Analysis Version
Design of
_ | Architecture
| and System
Core i
.| Develop
S| aMersion
i 4
E}wrporale Deliver
ustomer i
Foadback the Version
Ellicit
Customer |=
Feedback

b. Write anote on view catalog.

[5]

[5]

Soln. - A view catalog is the reader's introduction to the views that the architect has chosen to
include in the suite of documentation.

When using the documentation suite as a basis for communication, it is necessary for a
new reader to determine where particular information can be found. A catalog contains
this information. When using the documentation suite as a basis for analysis, it is
necessary to know which views contain the information necessary for a particular
analysis. In a performance analysis, for example, resource consumption is an important
piece of information, A catalog enables the analyst to determine which views contain
properties relevant to resource consumption.

There is one entry in the view catalog for each view given in the documentation suite.
Each entry should give the following:

1. The name of the view and what style it instantiates
2. A description of the view's element types, relation types, and properties
3. A description of what the view isfor

4. Management information about the view document, such as the latest version, the
location of the view document, and the owner of the view document

The view catalog is intended to describe the documentation suite, not the system being
documented. Specifics of the system belong in the individual views, not in the view
catalog. For instance, the actual elements contained in a view are listed in the view's
element catal og.

***********************************AII the ba**

