CMR

INSTITUTE OF
TECHNOLOGY USN
Internal Assesment Test - |1
Sub: Unix System Programming Code: 10CS62
Date: | 08/05/2017 | Duration: 90 Max 50 @ Sem: VI Branch: | SE

mins Marks:
Answer Any FIVE FULL Questions

OBE
Marks =5 [RaT

1 (a) Discuss the file and record locking in Unix system. Explain the fentl API for file [10] CO3 L2
locking.

2 (a) List and explain the different forms of exec function with prototype declaration [10] CO4 L3
along with meaning and diagram that shows relationship among them. Write a
program to echo all its command line arguments and environment variable

3 (a) What is process accounting? Explain with neat diagram? Write a program to [10] CO4 L3
illustrate the generation of accounting data

4 (a) What are pipes? What are its limitations? Write a program to create a pipe [10] CO4 L2
between parent and its child to send the data down the pipe

5 (a) Write short notes on the following: [10] CO4 L2
a) Message Queues b) Semaphores
6 (a) With neat diagram explain inter process communication using FIFO. [6] CO4 L3
(b) Write a “‘C’” program to illustrate the concept of co-processes [4 CO4 L2
7 (8) What is job control? Summarize the job control features with help of neat [5] CO4 L2
diagram
7 (b) Explain terminal login and network login, with suitable diagram [5] CO4 L3

***********************************AII the beg**

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore — 560 037, T:-+9180 28524466 / 77

CMR \Q
INSTITUTE OF N
TECHNOLOGY 3c)

Scheme and Solution for USP(10CS62) -1AT2 2017

Q. 1 Discuss the file and record locking in Unix system. Explain the fcntl API for file locking

Explanation- 2M

Multiple processes performs read and write operation on the same file concurrently.
This provides a means for data sharing among processes, but it also renders difficulty for any process in

determining when the other process can override data in a file.
S0, in order to overcome this drawback UNIX and POSIX standard support file locking mechanism.

File locking is applicable for regular files.

Only a process can impose a write lock or read lock on either a portion of a file or on the entire file.

The differences between the read lock and the write lock is that when write lock is set, it prevents the other
process from setting any over-lapping read or write lock on the locked file.

Similarly when a read lock is set, it prevents other processes from setting any overlapping write locks on the
locked region.

The intension of the write lock is to prevent other processes from both reading and writing the locked region
while the process that sets the lock is modifying the region, so write lock is termed as “Exclusive lock”.

The use of read lock is to prevent other processes from writing to the locked region while the process that
sets the lock is reading data from the region.

Other processes are allowed to lock and read data from the locked regions. Hence a read lock is also called
as “shared lock “.

File lock may be mandatory if they are enforced by an operating system kernel.

If a mandatory exclusive lock is set on a file, no process can use the read or write system calls to access the
data on the locked region.

Prototype 1M

#include<fentl.h>

int fentl(int fdesc, int cmd_flag,);

Flags-1M

F_SETLK sets a file lock, do not block if this cannot succeed immediately.

F_SETLKW sets a file lock and blocks the process until the lock is acquired.

F_GETLK queries as to which process locked a specified region of file.

Structure flock 1M

struct flock {

short I_type; /* what lock to be set or to unlock file */

short 1_whence; /* Reference address for the next field */
off t1 start ; /*offset from the 1 whence reference addr*/
off_t1_len ; /*how many bytes in the locked region */
pid_t 1_pid ; /*pid of a process which has locked the file */
I_type value Use 1M

F_RDLCK Set a read lock on a specified region
F_WRLCK Set a write lock on a specified region
F_UNLCK Unlock a specified region
1_whence value Use 1M
SEEK_CUR The I_start value is added to current file pointer address
SEEK_SET The I_start value is added to byte O of the file SEEK_END
The 1_start value is added to the end of the file
Program — 3M
#include <unistd.h>

#include<fcntl.h> int main ()

{

int fd; struct flock lock;

fd=open(“divya”,0 RDONLY);
lock.l_type=F_RDLCK;
lock.l whence=0;
lock.l_start=10;

lock.l_len=15;

fentl(fd,F_SETLK,&lock);

}

Q. 2 List and explain the different forms of exec function with prototype declaration along with
meaning and diagram that shows relationship among them. Write a program to echo all its
command line arguments and environment variable

Explanation 2M

When a process calls one of the exec functions, that process is completely replaced by the new program, and the
new program starts executing at its main function. The process ID does not change across an exec, because a new
process is not created; exec merely replaces the current process - its text, data, heap, and stack segments - with a
brand new program from disk.

There are 6 exec functions:

All forms of exec function-2M

#include <unistd.h>

int execl (const char *pathname, const char *arg0O,... /* {(char *)0 */ };
int execv(const char *pathname, char *const argv [1);
int execle(const char *pathname, const char *argQ,... /*{(char *)0, char

*const envp */);

int execve (const char *pathnams, char *const argv[], char *const snvpl[]);
int execlp(const char *filenams, const char *argl, ... /* (char *)0 */);
int execvp(const char *filename, char *const argv []);

All six return: -1 on error, no return on success.

Diagram-2M
w vaiue> 1wl L.lll.:l_L.lL,J.llle Llllb_.:i L=, L.lLl.‘J_'_}ULJ.llLCf, aliu i_.J.llD_L_Z.‘J Lilue .
execlp execl execle
build argo build arge build argo
ooy try each execy use ol execve
g PATH prefix) environ | (system call)

Relationship of the six exec functions

Program-2M

Example of ex=c functions
#include "apue.h"
#include <sys/wait.h>

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL };

int main (void)

{
pid t pid;
if ({(pid = fork()) < 0) {
err_sys("fork error") ;
} else if (pid == 0) { /* specify pathname, specify environment */
if (execle("/home/sar/bin/echoall", "echoall", "myargl",
"MY ARG2", (char *)0, env init) < 0)
err_sys("execle error") ;
}
if (waitpid(pid, WULL, 0) < 0)
err_sys("wait error") ;
if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) { /* specify filename, inherit environment */
if (execlp("echoall”, "echcall", "only 1 arg", (char *)0)}) < 0)
err_sys("execlp error") ;
}
exit(0) ;
}
Program-2M

Echo all command-line arguments and all environment strings
#include "apue.h"

Int main(int argc, char *argv[])
{

int i;

char **ptr;

extern char **environ;

for (i = 0; i < argc; i++) /* echo all command-line args */

printf("argv[%d]: %s\n", i, argv[i]):

for (ptr = environ; *ptr != 0; ptr++) /* and all env strings */

printf("%s\n", *ptr);

exit(0);

Q. 3 What is process accounting? Explain with neat diagram? Write a program to illustrate the
generation of accounting data
Explanation 2M

Most UNIX systems provide an option to do process accounting. When enabled, the kernel writes an
accounting record each time a process terminates.

These accounting records are typically a small amount of binary data with the name of the command, the
amount of CPU time used, the user ID and group 1D, the starting time, and so on.

A superuser executes accton with a pathname argument to enable accounting.

The accounting records are written to the specified file, which is usually /var/account/acct. Accounting is
turned off by executing accton without any arguments.

The data required for the accounting record, such as CPU times and number of characters transferred, is

kept by the kernel in the process table and initialized whenever a new process is created, as in the child after
afork.

Each accounting record is written when the process terminates.

This means that the order of the records in the accounting file corresponds to the termination order of the
processes, not the order in which they were started.

Structure 2M
The structure of the accounting records is defined in the header <sys/acct.h> and looks something like

typedef wu short comp t; /* 3-bit base 8 exponent; 13-bit fraction */

struct acct

{

char ac_flag; /* flag */

char ac_stat; /* termination status (signal & core flag only) */
/* (Solaris only) */

uid £t ac uid; /* real user ID */

gid t ac gid; /* real group ID */

dev t ac tty; /* controlling terminal */

timg_t ac:btime; /* starting calendar time */

comp t ac utime; /* user CPU time (clock ticks) */

comp:t achtime: /* system CPU time (clock ticks) */

comp t ac etime; /* elapsed time (clock ticks) */

comp t ac mem; /* average memory usage */

comp t ac io; /* bytes transferred (by read and write) */
/* "blocks" on BSD systems */

comp t ac rw; /* blocks read or written */
/* (not present on BSD systems) */

char ao_gomm[ﬁ]; /* command name: [8] for Solaris, */

/* [10] for Mac 0S8 X, [16] for FreeBSD, and */
/* [17] for Linux */

Program 3M
Program to generate accounting data

#include "apue.h"

Int main(void)

{
pid t pid;

if ((pid = fork()) < 0)
err sys("fork error");

else if_(pid = 0) { /* parent */
sleep(2);
exit(2); /* terminate with exit status 2 */

/* first child */
if ((pid = fork()) < 0)
err_sys{"fork error") ;
else if (pid '= 0) {
sleep(4);
abort() ; /* terminate with core dump */

/* second child */
if ((pid = fork()) < 0)
err sys("fork error");

else if (pid '= 0) {
execl ("/bin/dd", "dd", "if=/etc/termcap", "of=/dev/null", NULL) ;
exit(7):; /* shouldn't get here */

/* third child */
if ((pid = fork()) < 0)
err sys("fork error");
else if (pid !'= 0) {

sleep(8) ;
exit({0); /* normal exit */
}
/* fourth child */
sleep(6) ;
kill (getpid(), SIGKILL) ; /* terminate w/signal, no core dump */

exit(6) ; /* shouldn't get here */

Diagram 3M

parent
. e , .
eleep(2) \t{.\ first child
exit (2) o
sleep(4) w?‘,{.\ second child
abort ()

L5 : :
Ni third child
' z
sleep(8) W fourth child
exit (0]

sleep(6)
kill()

aexecl

/bin/dd

Process structure for accounting examgle

Q. 4 What are pipes? What are its limitations? Write a program to create a pipe between parent
and its child to send the data down the pipe

Pipe definition + explanation -2M
Limitation -2M
Pipe prototype- IM

Pipes are the oldest form of UNIX System IPC. Pipes have two limitations.

P Historically, they have been half duplex (i.e., data flows in only one direction).
> Pipes can be used only hetween processes that have a common ancestor. Normally, a pipe is created by a
process, that process calls £ork, and the pipe is used between the parent and the child.
A pipe is created by calling the pipe function.

#include <unistd.h>

int pipe(int filedes[2]);

Returns: 0 if OK, 1 on error.
Two file descriptors are returned through the filedes argument: filedes[0] is open for reading, and filedes[1] is open
for writing. The output of filedes[1] is the input for filedes[0].

LT P rodC e LISET [PIO0Ess

el [2] fadll] ‘

A] g T

ek

kernel

Program -5M
int
main (void)
{

int n:

int fd[2]:

pid t pid;

char line [MAXT.INE] ;

if (pipe(fd) < 0)
err sys("pipe error"});
if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid > 0) { /* parent */
close (£4[0]) ;
write(fd[1l], "hello world\n", 12);
} else | /* child */
close(£d[1]) ;
n = read(fd[0], line, MAXT.INE) ;
write (STDOUT FILENO, line, n);
}
exit(0);

Q. 6 Write short notes on the following:
a) Message Queues b) Semaphores
Explanation 1M

Structure msqid_ds-1M

4 message queue is a linked list of messages stored within the kernel and identified by a message queue identifier.
We'll call the message queue just a queue and its identifier a queue ID.

4 new queue is created or an existing queue opened by msgget. New messages are added to the end of a queue by
nsgsnd. Every message has a positive long integer type field, a non-negative length, and the actual data bytes
‘corresponding to the length), all of which are specified to msgsnd when the message is added to a queue. Messages
are fetched from a queue by msgrcv. We don't have to fetch the messages in a first-in, first-out order. Instead, we
zan fetch messages based on their type field.

zach queue has the following msgid_ds structure associated with it:

struct msgid_ds

{
struct ipc_perm msg_perm; /* see Section 15.6.2 */
msgqgnum_t msg_gnum; /* # of messages on queue */
msglen_t msg_gbytes; /* max # of bytes on queue */
pid_t msg_lspid; /* pid of last msgsnd() */
pid_t msg_lrpid; /* pid of last msgrev() */
time t msg_stime; /* last-msgsnd() time */
time t msg_rtime; /* last-msgrev() time */
time t msg_ctime; /* last-change time */

b
Function msgget prototype-1M

The first function normally called is msgget to either open an existing queue or create a new queue.

#include <sys/msg.h>

int msgget(key_ t key, int flag);

Returns: message queue ID if OK, 1 on error

Function msgctl prototype-1M

The msgctl function performs various operations on a queue.

#include <sys/msg.h>

int msgetl(int msqgid, int emd, struct msqgid ds *buf);

Returns: 0 if OK, 1 on error.

Function msgsnd prototype- 1M

Data is placed onto a message queue by calling msgsnd.

#include <sys/msg.h>

int msgsnd(int msqgid, const void *ptr, size t nbytes, int flag);

Returns: 0 if OK, 1 on error.

Q.5b)
Definition-1M

A semaphore is a counter used to provide access to a shared data object for multiple processes.

To obtain a shared resource, a process needs to do the following:
1. Test the semaphore that controls the resource.
2. If the value of the semaphore is positive, the process can use the resource. In this case, the process
decrements the semaphore value by 1, indicating that it has used one unit of the resource.
3. Otherwise, if the value of the semaphore is 0, the process goes to sleep until the semaphore value is greater
than 0. When the process wakes up, it returns to step 1.

Semaphore structure-1M

The kernel maintains a semid ds structure for each semaphore set:
struct semid_ds i
struct ipc perm sem perm; /* see Section 15.6.2 */

unsigned short sem nsems; /* # of semaphores in set */
time t sem otime; /* last-semop() time */
time t sem ctime; /* last-change time */

b

Function prototype 1M* 3=3M

The first function to call is semget to obtain a semaphore ID.
#include <sys/sem.h>

int semget(key_t key, int nsems, int flag)

Returns: semaphore ID if OK, 1 on error

The semctl function is the catchall for various semaphore operations.

#include <sys/sem.h>

int semctl(int semid, int semnum, int emd,... /* union semun arg */);

The function semop atomically performs an array of operations on a semaphore set.

#include <sys/sem.h>

‘ int semop (int semid, struct sembuf semoparray[], size_t nops);

Q. 6. A) With neat diagram explain inter process communication using FIF

Digram-2M
SETVET
‘&
read requests ‘D'f’éh.
chient-specific well-known client-specific
FIFO
a f

|
Illf"r:-::-:l replies

Explanation-3M

FIFO’s can be used to send data between a client and a server. If we have a server that is contacted by
numerous clients, each client can write its request to a well-known FIFO that the server creates. Since there
are multiple writers for the FIFO, the requests sent by the clients to the server need to be less than PIPE_BUF
bytes in size.

This prevents any interleaving of the client writes. The problem in using FIFOs for this type of client server
communication is how to send replies back from the server to each client.

A single FIFO can’t be used, as the clients would never know when to read their response versus responses
for other clients. One solution is for each client to send its process ID with the request. The server then
creates a unique FIFO for each client, using a pathname based on the client’sprocess ID.

For example, the server can create a FIFO with the name /vtu/ ser XXXXX, where XXXXX is replaced with the
client’s process ID. This arrangement works, although it is impossible for the server to tell whether a client
crashes. This causes the client-specific FIFOs to be left in the file system.

The server also must catch SIGPIPE, since it's possible for a client to send a request and terminate before
reading the response, leaving the client-specific FIFO with one writer (the server) and no reader.

Q. 6 b) Write a ‘C’ program to illustrate the concept of co-processes

Int main{(wvoid)

{
int n, intl, int2;
char line [MAXT.ITNE] ;

while ((n = read(STDIN FILENO, line, MAXLINE)) > 0) {
line[n] = 0; /* mill terminate */

if (sscanf(line, "%d3d", &intl, &int2) == 2) {
sprintf{line, "%d\n", intl + int2);

n = strlen{(line) ;
if (write(STDOUT FILENO, line, n) != n)
err sys("wriEé error") ;
} else { -
if {write{STDOUT_FILENO, "invalid args\n", 13) 1= 13)

err sys("write error");
}

}
exit(0);

Q. 7 a) What is job control? Summarize the job control features with help of neat diagram

Diagram 3M

indit or inetd

et ey or
celnatcd

sxes, after setsid, then

r-:-slﬂl'.v]irrl-n.'r-;e; controlling terminal

login

axac

login shell

foregroumd

process growpis) PIOCOSS Eroup

Leaetpgrp o sel process group
for controlling terminal

]
1
I
]
I
L]
1
]
]
]
)
]
1
i
1
i
i
]
]
1
i
1
(]
]
]
i
: background
]
]
]
i
]
L]
i
L]
1
||
1
L]
]
L)
1
L]
1
L]
]
i
]
[}
1
]
1

Explanation -2M

This feature allows us to start multiple jobs (groups of processes) from a single terminal and to control which jobs
can access the terminal and which jobs are to run in the background. Job control requires three forms of support:

e Ashell that supports job control

e The terminal driver in the kernel must support job control

e The kernel must support certain job-control signals

This signal normally stops the background job; by using the shell, we are notified of this and can bring the job into
the foreground so that it can read from the terminal. The following demonstrates this:

5 cat > temp.foo & start in background, but it'll read from standard input
[1] 1681
5 we press RETURN
[1] + Stopped (SIGTTIN) cat > temp.foo &
5 fg ®1 bring job number 1 inte the foreground
cat > temp.foo the shell tells us which job is now in the foreground
hello, world enter one line
D type the end-of-file character
5 cat temp.foo check that the one line was put into the file

hello, world

Q. 7 b) Explain terminal login and network login, with suitable diagram

Terminal login-2.5M

pracess 11V

forks once per terminal;
create empty environment

init

}reads Jetc/ttys;

Cd T =

Vs ’ +f|::rk\ R Y

init

exec _ _
opens terminal device

(file descriptors 0, 1, 2);
geLLy
reads user name;
initial enviromment sot
exen
login

The terminals were either local (directly connected) or remote (connected through a modem). In either case, these

logins came through a terminal device driver in the kernel.

The system administrator creates a file, usually /=tc/ttys, that has one line per terminal device. Each line specifies
the name of the device and other parameters that are passed to the getty program. One parameter is the baud
rate of the terminal, for example. When the system is bootstrapped, the kernel creates process ID 1, the init
process, and it is init that brings the system up multiuser. The init process reads the file /etc/ttys and, for
every terminal device that allows a login, does a £ork followed by an ex=- of the program g=tty. This gives us the

processes shown in Figure 9.1.

Network login

process [0 T

fork/axec of /bin/sh, which
executes shell scripl fere/re
T whiem system comes up multuser
TCTF conmection request
from TELMET client

. =
} when conmection request

arrives from TELNET client
BXE2C

telnetd

The t=1n=td process then opens a pseudo-terminal device and splits into two processes using fork. The parent
handles the communication across the network connection, and the child does an ex=c of the 1ogin program. The
parent and the child are connected through the pseudo terminal. Before doing the =x=c, the child sets up file
descriptors 0, 1, and 2 to the pseudo terminal. If we log in correctly, 1cgin performs the same steps we described in
Section 9.2: it changes to our home directory and sets our group IDs, user ID, and our initial environment. Then
login replaces itself with our login shell by calling =x=c. Figure 9.5 shows the arrangement of the processes at this
point.

	10CS62 Unix System Programming QP by Shilpa Mangesh Pande.pdf
	Scheme and solution_IAT2_10CS62 - Shilpa Mangesh Pande.pdf

