USN					

<u>Internal Assessment Test II – May, 2017</u>

Sub:	Compiler Design	·					Code	: 10	CS63	
Date:	9/05/2017	Duration: 90 mins	Max Marks:	50	Sem:	VI	Branc	ch: CS	Е	
Answer Any FIVE FULL Questions										
]	Marks	OB	E
	Consider the gramm		A a b					[5+5]	CO1	L1
((i) Compute sets of I	LR (1) items (ii) Con	nstruct canoni	cal LR(1	l) parsin	g tabl	e.			
2.	-	ng table for LALR (1		the follo	owing gr	ramm	ar.	[10]	CO2	L3
	S CC C	a C C	d							
3. (a)	Define the followin (i) Quadruples (ii	ng with examples:) Triples (iii) Indire	ect Triples					[4]	CO3	L3
(b)	Construct a DAG a a+2*(a-3)+(a-3)*3	nd a three address-co	de for the exp	ression				[6]	CO3	L3
4.		mple type declaration 5,c along with evalua		depende	ency graj	oh for	the	[10]	CO3	L3
5.(a)	Generate 3-address statement for the following programming construct. i=1, sum=0 do { sum+= a[i] * b[i] i++ } while(i<=20) (b) Write 3-address code for switch statement.						[6]	CO3	L3	
(0)	write 3-address co	ode for switch statem	ient.					[4]		
6.	annotated parse	oductions shown below tree for 20*3+5 T, T T*F,T F, I			ıles and	cons	truct	[10]	CO3	L3

Scheme of Evaluation & Solution

Internal Test -II, May 2017

Sub: Compiler Design (100563)

OS -> AA

OA A -> Aa

3 A -> 6

@ Sets of LR(1) ritems

(5M)

To: s -) . S , \$

S -, AA,\$

An. Aa, bla

A-). 6, 6/2

II: GOTO (IO, S)

s' - S., \$

Iz: GOTO (IO, A)

5 7 A-A, \$

A) A. a, b/a

A 7. Aa, \$1a

A) . b, \$ | a

In: 6000 (19, a)

In: GOTO (IO, 6) A-) 6., 6/a

In, hoto (In, A)

5-) AA.,\$

A-) A-a, \$|a

Is; Goto (Iz, a)

A-) Aa., 6/a

I6; GOTO (In, 6)

A-76.192

A-) Aa., \$12

CMR				
Canon	rical L	-R(1) Par	sting table	(5M)
		Action	\$	SA
States	0	Ь	P	1 2
0		53	2 2 2 2 12	
1			Accept	4
2	\$5	56		
3	83	83	81	
4	51			
5	82	82	83	
6	83		82	
1	82			
	1			
				1

Is: Goto (Io, a)

C -) a.C, ald

C-) . ac, ald

c - 1 - d , ald

Is: GOTO (IZ, C)

S -) C C · , \$

In: GOTO (In,d)

C-) d. 1\$

Ia hoto (Is, a)

C-yiacaya

In: Goto (Io, d)

C -) d., ald

IG: GOTO (IZ, a)

c -> a.c,\$

C-), aC,\$

c -, d, \$

Is: GOTO (Iz, C)

C + a C., ald

GOTO (I3, Q) 2 I3

C-)a/C, ald GOTO(I3,d)= I4

Iq: GOTO (I6, C)

C -) a C., \$

GUTO (I6, a) = I6

GOTO (IG, d) = I7

Q.3.

T1 = C * 5

TZ=b+T1

a = T2

Quadruple

Record	Operatus	opmd1	OPmd 2	Result
0	*	C	5	71
1	+	Ь	TI	Tz
2	=	Tz		a

Torple

Record index	operatus	obad 1	Obmd 2
0	¥	C	5
1	+	Ь	LOJ
2	7	(1)	-

Indirect Triple

Address	Pointer to the Record
100	[o]
101	[1]
102	[2]

CMR

(b)
$$a + 2 * (a-3) + (a-3) * 3$$

DAG

[3M]

T1 = a-3

T2 = 2 * T1

T3 = T, * 3

Ty = a+T2

T5 = T4 + T3

SDD for simple type declaration

(5M)

Q.4

n T -) int

3) T -) float

4) L -> L1, 2d

5) L -) ~d

Semantic Rules 1-inh = T-type

3 M

T. type = integer

T. type 2 Sbat

L1. inh 2 L. inh

addType (id. entry, L. inh)
addType (id. entry, L. inh)

for int a,b,c Dependency grown (5M) The of yeary, idl entry Order of evaluation 8 10

5M)

Q.5. Productions

Semantic Rules

DL -) E

L. val z 12. val

3 (2 -) RHT

E-val = E-val + T. val

13 (2 -) T

E-val 2 T-val

9) T -) T &F

T-Val - T-val & F-Val

5) 5 -16

T- val = F- val

(G) F -> (E)

F. Val = Q- Val

3 F -) dignt

F. val - digit. lexval

Annotated Passe tree for 20*3+5

L. val 265

E-val = 65

T val = 5

E.val +

T. val=60 F. val = 5

Tival of F. Val 23 digit, lexival 25

F. val 220 digit lexvel = 3

digit-level 220

CMR

G-(a)

3

sum + = a[i] * b[i]

元十十

Juhile (2 < 20)

3-add code for the above brogram segment

シント

Sum 20

(6 m)

L1: T, = baseadd (a)

T2 = 2 * 4

T3 2 TI[T2]

Ty = baseadd (b)

T5 = Ty [T]

T6 = T3 & T5

T2 = Sum + T6

Sum = Ty

てのこうさ十

2 = T8

if i <= 20 goto L1

L2 2

3-add code for switch Statement Switch (expr) case VI. St; bolan, case V2; SZ; break; Sm-1; break; Case Vn-1: Sm; break; default: (MM) 3-add code in T) Evaluate expr (result Mr. code for SI guto LI goto mext rif T == V1 11; code for 52 goro 12 guto mext Ling: code for Sm-, goro Ln-1 if + == Vm-1 goto mext in; code for Sy goxo goro next

mext: