
CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test – II – May 2017
Sub: COMPUTER GRAPHICS & VISUALIZATION Code: 10CS65
Date: 10 / 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: 6 A,B,C Branch: CSE

Answer Any FIVE FULL Questions

Marks
OBE

CO RBT

1. Explain various types of views with neat diagrams. [10] CO6 L2

2. Derive the projection matrices for oblique projection matrices. [10] CO6 L3

3. Write a note on hidden surface removal concept. Explain Projection Normalization. [10] CO2 L3

4. Derive the simple perspective and orthographic projections. [10] CO6 L3

5. What are the different types of light sources and light-material interactions used in
OpenGL?

[10] CO5 L2

6. Explain Phong lighting model with neat diagram? How to represent (functions)
material and light interaction in OpenGL?

[10] CO5 L2

7. Write a program to approximate a sphere by recursive sub division of
tetrahedron.

[10] CO2 L3

8. Write a note on different polygon shading used in OpenGL. [10] CO5 L3

Page 1 of 20

CMR
INSTITUTE OF
TECHNOLOGY

Internal Assessment Test II – April 2017

SOLUTION

Sub: Computer Graphics & Visualization Code: 10CS65

Date: 10/05/2017
Duration:

90
mins

Max
Marks: 50 Sem: VI Branch: CSE

Questions and Answers. Marks
OBE

CO RBT
1 Explain various types of views with neat diagrams.

3 basic elements for viewing:

– One or more objects

– A viewer with a projection surface

– Projectors that go from the object(s) to the projection surface

Classical views are based on the relationship among these elements. Each object is

assumed to constructed from flat principal faces

– Buildings, polyhedra, manufactured objects

– Front, top and side views.

Perspective and parallel projections:

Parallel viewing is a limiting case of perspective viewing. Perspective projection has a COP

where all the projector lines converge.

10

CO6 L2

Page 2 of 20

Orthographic Projections:

Projectors are perpendicular to the projection plane. Projection plane is kept parallel to one of

the principal faces. A viewer needs more than 2 views to visualize what an object looks like

from its multiview orthographic projection.

Axonometric Projections

Projectors are orthogonal to the projection plane , but projection plane can move relative to

Page 3 of 20

object. Classification by how many angles of a corner of a projected cube are the same none.

Perspective Viewing

Characterized by diminution of size i.e. when the objects move farther from the viewer it

appears smaller. Major use is in architecture and animation.

Oblique Viewing

The oblique views are the most general parallel views. We obtain an oblique projection

by allowing the projectors to make an arbitrary angle with the projection plane.

2 Derive the projection matrices for oblique projection matrices.

An oblique projection can be characterized by the angle that the projectors make with the projection
plane, as shown in the above figure.
We can derive the equations for oblique projections by considering the top and side views in the
below figure.

10

CO6 L3

Page 4 of 20

If we consider the top view, we can find xp by noting that
tan θ = z/xp-x
and thus,
xp=x+z cotθ
Likewise,
yp= y + z cot φ.
And zp=0;

where H(θ , φ) is a shearing matrix. Thus, we can implement an oblique projection by first doing a
shear of the objects by H(θ , φ) and then doing an orthographic projection.
And

Page 5 of 20

Final Matrix for oblique projection is
N = MorthSTH

3 Write a note on hidden surface removal concept. Explain Projection Normalization.
A graphics system passes all the faces of a 3d object down the graphics pipeline to

generate the image. But the view might not be able to view all these phases. For e.g. all the 6
faces of a cube might not be visible to a viewer. Thus the graphics system must be careful as to
which surfaces it has to display. Hidden surface – removal algorithms are those that remove the
surfaces of the image that should not be visible to the viewer.

Projection normalization is used to convert all projections into orthogonal projections
by first distorting the objects such that the orthogonal projection of the distorted objects is
the same as the desired projection of the original objects. The concatenation of the
normalization matrix, which carries out the distortion and the simple orthogonal projection
matrix yields a homogeneous coordinate matrix that produces the desired projection.

10

CO2 L3

Page 6 of 20

One advantage of this approach is that we can design the normalization matrix so that view
volume is distorted into the canonical view volume, which is the cube defined by the planes.

x= ± 1, y= ± 1, z= ± 1.
Besides the advantage of having both perspective and parallel views supported by the same
pipeline by loading in the proper normalization matrix, the canonical view volume simplifies
the clipping process because the sides are aligned with the coordinate axes.

4 Derive the simple perspective and orthographic projections.
Simple Perspective projection:

10

CO6 L3

Page 7 of 20

A point in space (x, y, z) is projected along a projector into the point (xp, yp, zp). All

projectors pass through the origin, and, because the projection plane is perpendicular to the z-axis.

zp= d

Because the camera is pointing in the negative z-direction, the projection plane is in the

negative half-space z < 0, and the value of d is negative.

From the top view shown in Figure 4.32(b), we see two similar triangles whose tangents

must be the same. Hence,

x/z = xp/d,

therefore, xp=x/z/d

similarly, using figure 4.32(c) we get,

yp=y/z/d

Although this perspective transformation preserves lines, it is not affine. It is also

irreversible. Because all points along a projector project into the same point, we cannot recover a

point from its projection.

If p={x,y,z} is the point, then

Mp = q

Page 8 of 20

Where

we have to divide the first three components by the fourth to return to our original three

dimensional space, we obtain the results

Simple Orthogonal projection:

Let plane be at z=0, and if a point P={x,y,z} is projected orthogonally then,

Page 9 of 20

xp= x,

yp= y,

zp= 0.

We can write this result using our original homogeneous coordinates.

5 What are the different types of light sources and light-material interactions used in OpenGL?
These are the different types of light sources:

Point source: This kind of source can be said as a distant source or present infinite distance

away (parallel)

Spotlight: This source can be considered as a restrict light from ideal point source. A

Spotlight origins at a particular point and covers only a specific area in a cone shape. Ambient

light

– Same amount of light everywhere in scene

– Can model contribution of many sources and reflecting surfaces

Any kind of light source will have 3 component colors namely R, G and B

Types of Materials

10

CO5 L2

Page 10 of 20

Specular surfaces – These surfaces exhibit high reflectivity. In these surfaces, the angle of

incidence is almost equal to the angle of reflection.

Diffuse surfaces – These are the surfaces which have a matt finish. These types of surfaces

scatter light

Translucent surfaces – These surfaces allow the light falling on them to partially pass through

them.

The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror

would reflect light. A very rough surface scatters light in all directions.

6 Explain Phong lighting model with neat diagram? How to represent (functions) material and light
interaction in OpenGL?

Phong developed a simple model that can be computed rapidly

It considers three components

o Diffuse

o Specular

o Ambient

And Uses four vectors

– To source represented by the vector l

– To viewer represented by the vector v

– Normal represented by the vector n

– Perfect reflector represented by the vector r

10

CO5 L2

Page 11 of 20

Ambient Reflection

The amount of light reflected from an ambient source Ia is given by the ambient reflection

coefficient: Ra = ka Since the ambient reflection co efficient is some positive factor,

0<=ka<=1

Therefore Ia = kaLa

Diffuse Reflection

A Lambertian Surface has: Perfectly diffuse reflector, Light scattered equally in all directions.

Here the light reflected is proportional to the vertical component of incoming light

– reflected light ~cos qi

– cos qi = l · n if vectors normalized

– There are also three coefficients, kr, kb, kg that show how much of each color

component is reflected

Page 12 of 20

Specular Surfaces

Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors). Smooth

surfaces show specular highlights due to incoming light being reflected in directions

concentrated close to the direction of a perfect reflection . This kind of specular reflection could

be observed in mirrors.

Shading calculations are enabled by

o glEnable(GL_LIGHTING)

o Once lighting is enabled, glColor() ignored

Must enable each light source individually

o glEnable(GL_LIGHTi) i=0,1…..

For each light source, we can set an RGB for the diffuse, specular, and ambient parts, and the

position

GLfloat diffuse0[]={1.0, 0.0, 0.0, 1.0};

GLfloat ambient0[]={1.0, 0.0, 0.0, 1.0};

GLfloat specular0[]={1.0, 0.0, 0.0, 1.0};

Glfloat light0_pos[]={1.0, 2.0, 3,0, 1.0};

Page 13 of 20

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

glLightv(GL_LIGHT0, GL_POSITION, light0_pos);

glLightv(GL_LIGHT0, GL_AMBIENT, ambient0);

glLightv(GL_LIGHT0, GL_DIFFUSE, diffuse0);

glLightv(GL_LIGHT0, GL_SPECULAR, specular0);

Material Properties

All material properties are specified by :

glMaterialfv(GLenum face, GLenum type, GLfloat *pointer_to_array)

We have seen that each material has a different ambient, diffuse and specular properties.

GLfloat ambient[] = {1.0,0.0,0.0,1.0}

GLfloat diffuse[] = {1.0,0.8,0.0,1.0}

GLfloat specular[] = {1.0, 1.0, 1.0,1.0}

Defining shininess and emissive properties

glMaterialf(GL_FRONT_AND_BACK,GL_SHINENESS,100.0)

GLfloat emission [] = {0.0,0.3,0.3,1.0};

glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION, emission)

Defining Material Structures

Page 14 of 20

typedef struct material

{

GLfloat ambient[4];

GLfloat diffuse[4];

GLfloat specular[4];

GLfloat shineness;

}

materialStruct;

7 Write a program to approximate a sphere by recursive sub division of tetrahedron.

#include <GL/glut.h>
#include<stdio.h>
#include<math.h>
float v[4][3]={{0.0,0.0,1.0},

{0.0,0.94,-0.33},
{-0.82,-0.47,-0.33},
{0.82,-0.47,-0.33}};

int n;
void triangle (GLfloat *va,GLfloat *vb,GLfloat *vc)
{

glBegin(GL_TRIANGLES);
glVertex3fv(va);
glVertex3fv(vb);
glVertex3fv(vc);

glEnd();
}
void normalize(float *p)
{

double d=0.0;

10

CO2 L3

Page 15 of 20

int i;
for(i=0;i<3;i++)

d+=p[i]*p[i];

d=sqrt(d);
if(d>0.0)

for(i=0;i<3;i++)
p[i]/=d;

}
void divide_tetra(GLfloat *a,GLfloat *b,GLfloat *c,int m)
{

float m1[3],m2[3],m3[3];
int j;
if(m>0)
{ /*compute six midpoints*/

for(j=0;j<3;j++) m1[j]=(a[j]+b[j])/2;
normalize(m1);
for(j=0;j<3;j++) m2[j]=(a[j]+c[j])/2;
normalize(m2);
for(j=0;j<3;j++) m3[j]=(c[j]+b[j])/2;
normalize(m3);

divide_tetra(a,m2,m1,m-1);
divide_tetra(c,m3,m2,m-1);
divide_tetra(b,m1,m3,m-1);
divide_tetra(m1,m2,m3,m-1);

}
else

triangle(a, b, c); //draw triangle at end of recursion//
}
void display(void)
{

glClearColor(1.0,1.0,1.0,1.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glColor3f(1,0,0);

Page 16 of 20

divide_tetra(v[0],v[1],v[2],n);
divide_tetra(v[3],v[2],v[1],n);
divide_tetra(v[0],v[3],v[1],n);
divide_tetra(v[0],v[2],v[3],n);

glFlush();
}
void myReshape(int w,int h)
{

glViewport(0,0,w,h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-2.0,2.0,-2.0,2.0 ,-10.0,10.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}
int main(int argc,char **argv)
{
printf("enter the no of division ");
scanf("%d",&n);
glutInit(&argc,argv);
glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);
glutInitWindowSize(500,500);
glutCreateWindow("3d gasket");
glutReshapeFunc(myReshape);
glutDisplayFunc(display);
glEnable(GL_DEPTH_TEST);
glutMainLoop();
return 0;
}

8 Write a note on different polygon shading used in OpenGL.
OpenGL exploit the efficiencies possible for rendering flat polygons by decomposing
curved surfaces into many small, flat polygons. Consider a polygonal mesh, where each
polygon is flat and thus has a well-defined normal vector. There are three ways to shade the

10

CO5 L3

Page 17 of 20

polygons: flat shading, smooth or Gouraud shading, and Phong shading.

Flat Shading: The three vectors—l, n, and v—can vary as wemove frompoint to point on a
surface. For a flat polygon, however, n is constant. If we assume a distant viewer, v is
constant over the polygon. Finally, if the light source is distant, l is constant. Here distant
could be interpreted in the strict sense of meaning that the source is at infinity. The
necessary adjustments, such as changing the location of the source to the direction of the
source, could then be made to the shading equations and to their implementation. Distant
could also be interpreted in terms of the size of the polygon relative to how far the polygon
is from the source or viewer, If the three vectors are constant, then the shading calculation
needs to be carried out only once for each polygon, and each point on the polygon is
assigned the same shade. This technique is known as flat, or constant, shading. Flat shading
will show differences in shading among the polygons in our mesh. If the light sources and
viewer are near the polygon, the vectors l and v will be different for each polygon.
However, if our polygonal mesh has been designed to model a smooth surface, flat shading
will almost always be disappointing because we can see even small differences in shading
between adjacent polygons.

Smooth and Gouraud Shading: Suppose that the lighting calculation is made at each vertex
using the material properties and the vectors n, v, and l computed for each vertex. Thus,
each vertex will have its own color that the rasterizer can use to interpolate a shade for each
fragment. Note that if the light source is distant, and either the viewer is distant or there are
no specular reflections, then smooth (or interpolative) shading shades a polygon in a
constant color. If we consider our mesh, the idea of a normal existing at a vertex should
cause concern to anyone worried about mathematical correctness. Because multiple
polygons meet at interior vertices of the mesh, each of which has its own normal, the normal
at the vertex is discontinuous. Although this situation might complicate the mathematics,
Gouraud realized that the normal at the vertex could be defined in such a way as to achieve
smoother shading through interpolation. Consider an interior vertex, as shown in below

Page 18 of 20

figure where four polygons meet. Each has its own normal. In Gouraud shading, we define
the normal at a vertex to be the normalized average of the normals of the polygons that
share the vertex. For our example, the vertex normal is given by

n=n1+n2+n3+n4/|n1+n2+n3+n4|

Phong Shading: Phong proposed that instead of interpolating vertex intensities, as we do in
Gouraud shading, we interpolate normals across each polygon. Consider a polygon that
shares edges and vertices with other polygons in the mesh, as shown below

We can compute vertex normals by interpolating over the normals of the polygons that

Page 19 of 20

share the vertex. Next, we can use interpolation to interpolate the normals over the polygon.
Consider below figure. We can use the interpolated normals at vertices A and B to
interpolate normals along the edge between them:

nC(α) = (1− α)nA +αnB.

We can do a similar interpolation on all the edges. The normal at any interior point can be
obtained from points on the edges by

n(α,β) = (1− β)nC+βnD.

Once we have the normal at each point, we can make an independent shading calculations.

Page 20 of 20

Course Outcomes

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

PO
9

PO
10

PO
11

PO
12

CO1:
Describe pipeline architecture w.r.t
two dimensional applications.

2 1 2 1 - - - - 1 - 2 -

CO2:

Explain pipeline Hidden surface
removal, implicit functions, color
mechanism and demonstrate
approximation of sphere

2 2 1 - 3 - - - - - - -

CO3:
Design and Develop CAD program
using picking, Display List, Menu,
Input and Output devices

3 - 3 2 3 - - - - - 1 -

CO4:
Experiment affine transformation
activities w.r.t to Translation,
Rotation and Scaling operations.

1 - 1 1 - - - - - - - -

CO5:
List and summarize details of light
sources and material properties

2 - - 1 2 2 - - - - - -

CO6:
Analyze implementation strategies
w.r.t clipping and display
consideration concepts

1 1 1 2 2 2 3 - - - 1 -

Cognitive
level

KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,
when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,
discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change,
classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,
infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,
discriminate, support, conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;
PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and
society; PO7- Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;
PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

	CG_IAT2-QP - Kartheek G.C.R.pdf
	IAT-II solution of 10CS65 Computer Graphics and Visualization May 2017 by Kartheek G.C.R.pdf

