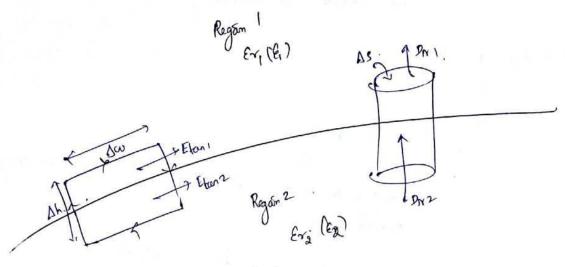
CMR INSTITUTE OF TECHNOLOGY							
	USN						CMR

INTERNAL ASSESSMENT TEST 2 – MAY 2017

Sub:	ELECTROMAGNE	TIC FIELD THEORY					Code:	15E	E45	
Date:	10/05/2017	Duration: 90 mins	Max Marks:	50	Sem:	4	Branch:	EEE	,	
		Answer A	Any FIVE FUL	L Questi	ions					
								Marks	OE	
								WILLIAM	СО	RBT
1(a)	Obtain the boundary	conditions for a diele	ectric – dielect	tric bour	ndary.			[05]	CO4	L2
1(b)	Derive the equation	of continuity of curre	nt.					[05]	CO4	L2
2	Using Laplace's e	quation for potentia	al function,	derive t	the ex	pressi	on for	[10]	CO3	L2
	capacitance of a cyl	lindrical capacitor, C	$=\frac{2\pi\varepsilon L}{\ln(b/a)}$, w	here L	is the	length	of the			
2()	capacitor, a & b are	inner and outer radii o	of the cylindric	cal layer	rs.			50.03		
	Determine whether to or not.	the potential field $V =$	$= \rho^2 + z^2$ sat	isfies L	aplace'	s equa	ition	[02]	CO3	L3
3(b)	State and Prove Unio	queness theorem.						[80]	CO3	L1,
										L2
4(a)	Derive the expressi conductor using Bio	on for magnetic field of – Savart law.	intensity due	to finite	and in	finite		[07]	CO5	L2
4(b)		$(y + az)\mathbf{a}_x + (bx - 3)\mathbf{a}_x$	$(y-z)a_y + ($	4x + cy	y + 2z	$a_z V /$	m. Find	[03]	CO5	L3
	a, b and c if E is irr	otational.								
5(a)	A charged particle	moves with a uniform	velocity of 4	$a_x m/s$	s in a re	egion v	where	[04]	CO5	L3
	$E = 20 a_y V/m$ at the particle remains	and $\mathbf{B} = B_0 \mathbf{a_z} wb/m$ s constant.	<i>τ</i> ² . Determine	B ₀ such	that th	e velo	city of			
5(b)	Discuss the concept	t of scalar and vector	magnetic pote	entials				[06]	CO5	L2
6	Given $H = 20 \rho^2 q$	$a_{m{\phi}}A/m$ in cylindric	al coordinates	. Detern	nine			[10]	CO5	L3
	a. Current den	•								
		nt crossing the surface esult using Stokes the		$\leq \phi \leq 1$	2π and	dz =	0.			
7(a)		wire is carrying an ele ïeld, it is to be preven						[05]	CO5	L4
		tion of this magnetic f				y. ••• II	aı			
7(b)	Derive Lorentz force	ce equation and menti	on the applica	tions of	its solu	utions.		[05]	CO5	L3
8(a)	Derive the expressi	on for magnetic torqu	e due to a rec	tangular	curren	t loop	•	[06]	CO5	L3
8(b)	• •	straight conductors, located at x=0; y=0 ar h between them.						[04]	CO5	L3

SCHEME OF EVALUATION

		Mark Split-Up
1(a)	Diagram	1
	Derivation	4
(b)	Derivation	3
	Final Expression	2
2	Diagram	2
	Derivation	7
	Final Expression	1
3(a)	Formula	1
	Approach & Answer	1
3(b)	Statement	2
	Proof	6
4(a)	Diagram	1
	Derivation	4
	Final Expression	2
(b)	Formula	1
	Approach	1
	Answer	1
5(a)	Formula	1
	Approach	2
	Answer	1
5(b)	Scalar Potential:	
	Explanation	2
	Final Expressions	1
	Vector Potential:	
	Explanation	2
	Final Expressions	1
6	Current Density	3
	Current [RHS of Stokes Theorem]	2
	LHS of Stokes theorem and verification	5
7(a)	Diagram	2
	Approach	2
	Answer	1
(b)	Derivation	4
	Applications	1
8(a)	Diagram	1
	Derivation	4
	Final Expression	1
(b)	Formula	1
	Approach	2
	Answer	1



Work done around a closed path = 0 $\oint \vec{E} \cdot d\vec{t} = 0$.

Flangeritial
$$\vec{E}$$
 is continuous across \vec{E} tan $1 = \vec{E}$ ta

Gauss law:

Normal
$$\vec{D}^{i\dot{s}}$$

Normal $\vec{D}^{i\dot{s}}$

Normal $\vec{E}^{i\dot{s}}$

Normal $\vec{E}^{i\dot{s}}$

Normal $\vec{E}^{i\dot{s}}$

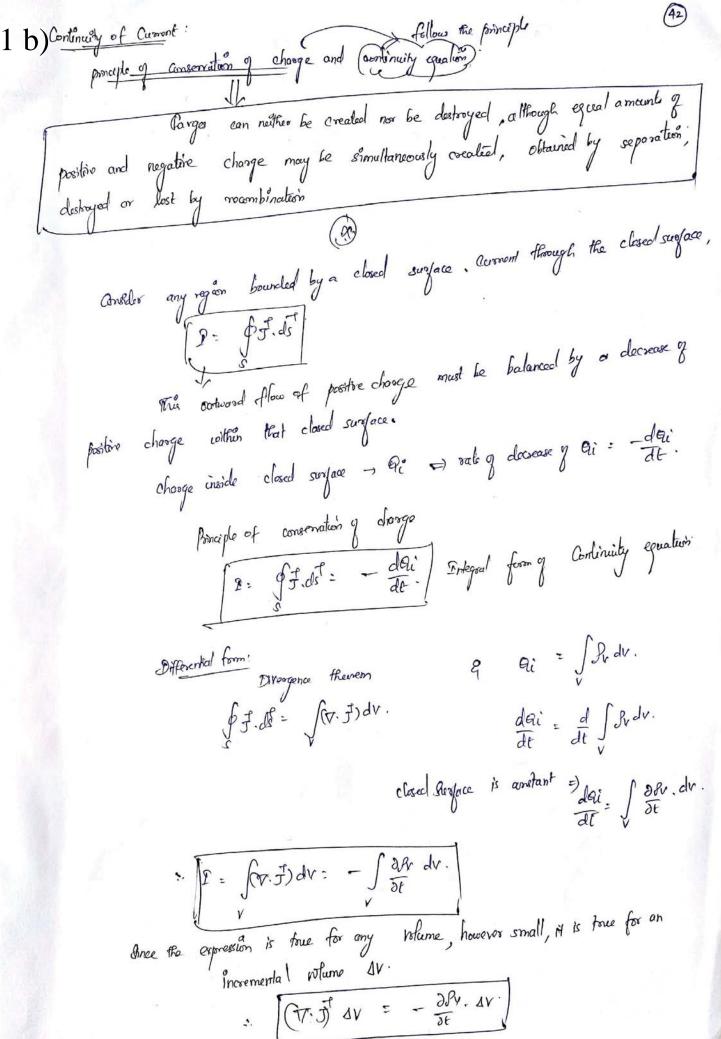
Normal $\vec{E}^{i\dot{s}}$

Normal $\vec{E}^{i\dot{s}}$

Normal $\vec{E}^{i\dot{s}}$

Output

Normal $\vec{E}^{i\dot{s}}$



Ourrent or charge per second direograp from a small volume per write volume is equal to the time rate of classease of charge per write volume at every point.

At
$$f = 1s$$
, arment at $r = 5m = 9$

$$f = J_{r}.S = \int_{0}^{\infty} e^{-t} \cdot 4\pi(5)^{2}$$
At $r = 6m = 9$

$$f = J_{r}.S = \int_{0}^{\infty} e^{-t} \cdot 4\pi(6)^{2}$$

$$f = 2f \cdot 7A$$

$$=\frac{\partial \mathcal{N}}{\partial t}: \nabla \cdot \vec{J} = \nabla \cdot \left(\vec{j} \in \vec{a}, \vec{j}\right) : \vec{a} : \vec{b} :$$

$$\partial v = -\int (\nabla \cdot \vec{f}) dt + \kappa(s)$$

$$\partial v = -\int_{s^2}^{s} e^{-t} dt + \kappa(s).$$

As
$$f \Rightarrow \infty$$
, $dv \rightarrow 0$ =) $R(G) = 0$.

$$R(G) = 0$$

$$\frac{f}{f} = \int_{V} \frac{1}{v} = \frac{1}{v}$$

$$) \quad \vec{D} = - \epsilon V_0 \alpha x^{\dagger},$$

$$\vec{k} = \vec{J}|_{\alpha=0} = -\frac{\epsilon V_0}{d} \vec{\alpha} \vec{x}$$

$$\mathfrak{P}_{v} = -\frac{\varepsilon V_{0}}{d} = \mathcal{J}_{S}.$$

$$Q = \int \int_{S} ds$$

$$Q = -\frac{\epsilon V_0}{d}$$

5) Capacitance,
$$C = \frac{|a|}{V_0} = \frac{2s}{d}$$
.

Cylondrical co-ordinates:

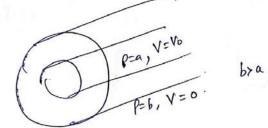
Vorsatains coils respect to 2 one nothing new.

Variation with Penly.

Entegrale
$$P \frac{dV}{dP} = A$$
. (Constant).
$$\frac{dV}{dP} = \frac{A}{P}$$

Boundary cooditions

Equipolential surfaces given by l= constant are cylinders. Cooxial capacitos on Coaxial fransmission line



$$\therefore V = \frac{v_0}{\ln(\alpha l_0)} \ln \rho - \frac{v_0}{\ln(\alpha l_0)} \ln \rho$$

$$\vec{p} = -\nabla V = -\frac{\partial}{\partial p} \left[\frac{V_0 \ln(b|a)}{\ln(b|a)} \right] \vec{a} \vec{p}.$$

$$\vec{D} = \vec{E} \vec{F}$$

$$\vec{D} = \vec{E} \vec{V}_0 \qquad \vec{D}_0 = \vec{D}_0$$

$$P_S = \frac{\epsilon V_0}{a} \frac{1}{2n(56a)}$$

$$C = \frac{9}{V_0} = \frac{8 V_0}{a V_0} \frac{a \pi a L}{a n (6 la)}$$

3 a) 👂

Defermine whether or not the potential field V: 02+29 satisfies

V= g2+2.

Laplace's equation :

Cylindrical system:

Laplace's equation

20 - D

 $\sqrt{2}V = \int_{0}^{1} \left(\frac{\partial}{\partial \rho} \int_{0}^{1} \frac{\partial V}{\partial \rho}\right) + \int_{0}^{1} \frac{\partial^{2}V}{\partial \rho^{2}} + \frac{\partial^{2}V}{\partial \rho^{2}}$ $=\frac{1}{\rho}\left(\frac{\partial}{\partial\rho}\left(\rho,\frac{\partial}{\partial\rho}\left(\rho^2+2^2\right)\right) + 0 + \frac{\partial^2}{\partial z^2}\left(\rho^2+2^2\right)\right)$

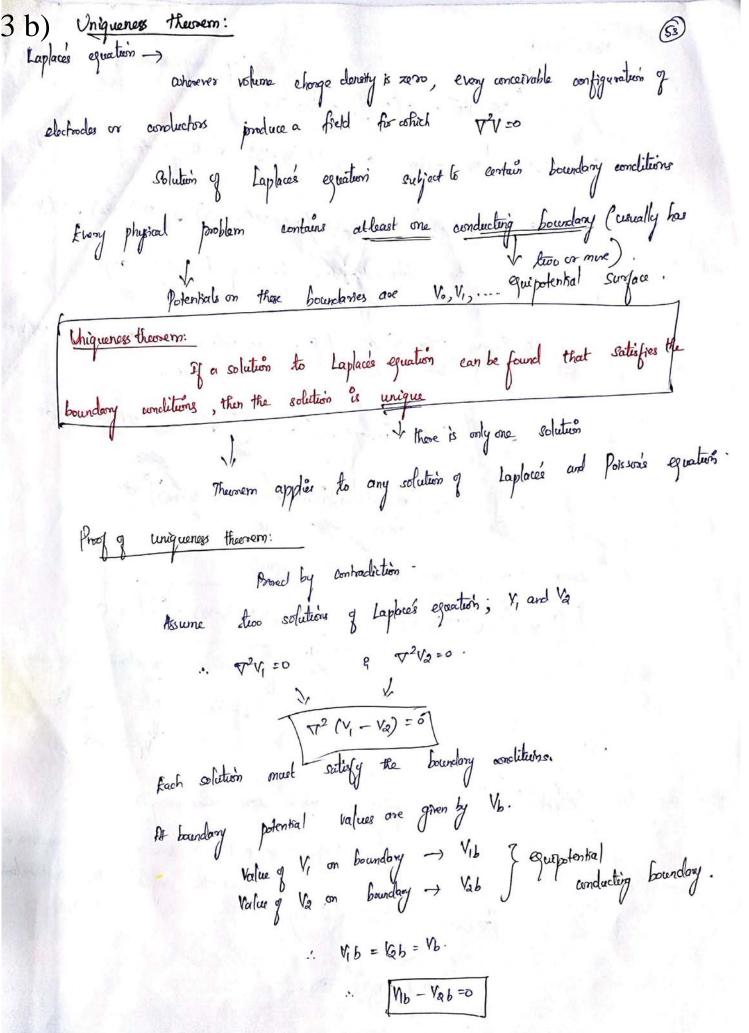
$$= \frac{1}{p} \left(\frac{\partial}{\partial p} \left(p, \frac{\partial}{\partial p} \left(p + \frac{\partial}{\partial p} \right) + \frac{\partial}{\partial z} \left(\frac{\partial z}{\partial z} \right) \right) \right)$$

$$= \frac{1}{p} \left(\frac{\partial}{\partial p} \left(p, \frac{\partial}{\partial p} \right) + \frac{\partial}{\partial z} \left(\frac{\partial z}{\partial z} \right) \right)$$

$$= \frac{1}{p} \left(\frac{\partial}{\partial p} \left(p, \frac{\partial}{\partial p} \right) + \frac{\partial}{\partial z} \left(\frac{\partial z}{\partial z} \right) \right)$$

= 1. (2× 28) + 2 and 2 = 4+2 = 6 = 0

V does not satisfy Laplace's equation



(T. (VD) = M(V.B) + B. VV) scalor V & Mecter D. Vector identity, € V(V1-1/2) as the vector Lot Vi-Va as the scales. T. ((1-V2) V(V1-V2)) = V1-V2 (7. V(V1-V2)) + V(V1-V2). V(V1-V2). Integrate throughout the Wolveme enclosed by the boundary surgaces $\int_{V_{0}} \nabla \cdot \left(\left(v_{1} - v_{2} \right) - \nabla \left(v_{1} - v_{2} \right) \right) dv = \int_{V_{0}} \left[V_{1} - v_{2} \right] \left(\nabla \cdot \nabla \left(v_{1} - v_{2} \right) \right) + \left[\nabla \left(v_{1} - v_{2} \right) \cdot \nabla \left(v_{1} - v_{2} \right) \right] dv$ = \int (t_1-va) [v. \(\nu(1-va))]dr + \int \([\nu(v_1-v_2)]\), \(\nu(v_1-v_2))]\)dr = $\int_{\Omega} \left(V_1 - v_2 \right) \left[\frac{\nabla \left(v_1 - v_2 \right)}{\nabla^2 \left(v_1 - v_2 \right)} \right] dv + \int_{\Omega} \left[\nabla \left(v_1 - v_2 \right) \right]^2 dv$ divergence therein to L.H.s. of equation. $\int_{V_0} \left| \nabla \cdot \left((V_1 - V_2) \nabla (V_1 - V_2) \right) dV \right| = \int_{V_0} \left((V_1 - V_2) \nabla (V_1 - V_2) \cdot dS \right) = 0.$ closed surface encloses equipotential boundary V16- Vab = 0 => 116= Vab J[v(V1-V2)] 2dv = 0 Integral can be zoro other everywhere Integrand as positive in some regions of negative in some other regard, there contribution to [V(V1-Va)] annot be regative (V1-Va))2=0 V(VI-VA) = 6

Gradeant of V1-V2 15 xoro everywhere.

4-v2 is constant with any co-ordenales

VI-1/2 = constant of this constant is zero, uniquenes theorem is proved.

If we consider a point on the boundary

41-12 = VIb-Vab = 0. VI = Va

groung two identical solutions

Uniqueness theorem also applies to Posseri equationis $\nabla^2 V_1 = -\frac{\beta v}{c}$ and $\nabla^2 V_2 = -\frac{\beta v}{\epsilon}$.

V2 (V1-V2) = 0

Bandony conditions require that VIB-VBB=0.

$$H = \int \frac{Id\vec{l} \times \alpha \vec{r}}{4\pi |\vec{r}|^2}$$

Savart law:

$$H = \int \frac{\vec{k'} ds \times q_{\vec{k'}}}{4\pi |\vec{k'}|^2} H = \int \frac{\vec{\mathcal{T}} dr \times q_{\vec{k'}}}{4\pi |\vec{k'}|^2}$$

$$H = \int_{V} \frac{\vec{J} dr \times q_{k}^{2}}{4\pi |\vec{k}|^{2}}$$

Application of Biot-Savart law:

$$\frac{1}{\sqrt{100}} \times \frac{1}{\sqrt{100}} = \frac{1$$

$$dixp = \frac{1}{p} \begin{vmatrix} a_1^f & pa_2^f & a_2^f \\ p & 0 & d_2 \\ p & 0 & -2 \end{vmatrix}$$

$$= \frac{1}{p} \left[-p \stackrel{7}{ap} \left(o - p dz \right) \right]$$

$$= \frac{p^2}{p} dz \stackrel{7}{ap}$$

$$= \frac{p^2}{p} dz \stackrel{7}{ap}$$

$$H = \int \frac{\Gamma}{4\pi\Gamma} \int \frac{\rho dz}{\rho + 2^2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\Gamma}{4\pi\Gamma} \int \frac{\rho dz}{\rho + 2^2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\Gamma}{4\pi\Gamma} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{\rho^2 \sec^2 \alpha}{\rho^2 \sec^2 \alpha} d\alpha \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{1}{\alpha \Gamma} \int \frac{1}{\alpha \Gamma} \frac{\alpha \rho}{\alpha \rho} \frac{1}{\alpha \rho} \frac{\alpha \rho}{\alpha \rho}$$

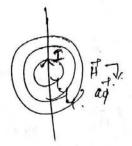
$$= \frac{\pi}{4\pi\Gamma} \int \frac{1}{\alpha \Gamma} \int \frac{1}{\alpha \Gamma} \frac{\alpha \rho}{\alpha \rho} \frac{1}{\alpha \rho} \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{1}{\alpha \Gamma} \int \frac{1}{\alpha \Gamma} \frac{\alpha \rho}{\alpha \rho} \frac{1}{\alpha \rho} \frac{\alpha \rho}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{1}{\alpha \Gamma} \int \frac{1}{\alpha \Gamma} \frac{\alpha \rho}{\alpha \rho} \frac{1}{\alpha \rho} \frac{1}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{1}{\alpha \Gamma} \int \frac{1}{\alpha \Gamma} \frac{\alpha \rho}{\alpha \rho} \frac{1}{\alpha \rho} \frac{1}{\alpha \rho}$$

$$= \frac{\pi}{4\pi\Gamma} \int \frac{1}{\alpha \Gamma} \int \frac{1}{\alpha \Gamma} \frac{1}{\alpha$$



4 b)

$$= \vec{a_x} \left[\frac{\partial E_2}{\partial y} - \frac{\partial E_3}{\partial z} \right] - \vec{a_y} \left[\frac{\partial E_2}{\partial x} - \frac{\partial E_3}{\partial z} \right] + \vec{a_z} \left[\frac{\partial E_3}{\partial x} - \frac{\partial E_3}{\partial y} \right]$$

$$= \vec{a_x} \left[\frac{\partial E_2}{\partial y} - \frac{\partial E_3}{\partial z} \right] - \vec{a_y} \left[\frac{\partial E_2}{\partial x} - \frac{\partial E_3}{\partial z} \right] + \vec{a_z} \left[\frac{\partial E_3}{\partial x} - \frac{\partial E_3}{\partial y} \right]$$

$$= ax \left[\frac{3y}{3y} \right]$$

$$= ax \left[\frac{3y}{3y} \left(\frac{4x+4y+2z}{3z} \right) - \frac{3}{3z} \left(\frac{5x-3y-2}{3z} \right) \right]$$

$$= \frac{3}{4x} \left[\frac{3y}{3y} \left(\frac{4x+4y+2z}{3z} \right) - \frac{3}{3z} \left(\frac{x+2y+4z}{3z} \right) \right]$$

$$-ay \left[\frac{\partial y}{\partial x} \left(4x + \alpha y + \partial z \right) - \frac{\partial}{\partial z} \left(x + 2y + \alpha z \right) \right]$$

$$-ay \left[\frac{\partial}{\partial x} \left(4x + \alpha y + \partial z \right) - \frac{\partial}{\partial z} \left(x + 2y + \alpha z \right) \right]$$

$$+a\frac{7}{2}\left[\frac{3}{3}\left(bn-3y-2\right)-\frac{3}{3y}\left(x+2y+a\frac{2}{2}\right)\right]$$

$$\Rightarrow a_{x}^{7} \left[c + i \right] - a_{y}^{7} \left[4 - a \right] + a_{z}^{7} \left[b - a \right] = 0 a_{x}^{7} + 0 a_{y}^{7} + 0 a_{z}^{7}$$

$$\begin{bmatrix} C=-1 \\ a=4 \end{bmatrix}$$

5 a)

Solution:

If a particle moves with constant relocity, its arcelonation is

Xero.

Ym is in compenes.

This scalar potential also satisfies Laplace's equation.

In free space,

$$\vec{B} = \mu_0 \vec{H}$$
 $\vec{\nabla} \cdot \vec{B}' = \nabla \cdot \mu_0 \vec{H}' = D$
 $\mu_0 \left(\nabla \cdot \vec{H}' \right) = 0$
 $\mu_0 \left(\nabla \cdot (\nabla \nabla v_m) \right) = 0$
 $\vec{A} = \vec{A} \cdot \vec{A} \cdot \vec{A} = 0$
 $\vec{A} = \vec{A} \cdot \vec{A} \cdot \vec{A} \cdot \vec{A} = 0$
 $\vec{A} = \vec{A} \cdot \vec{$

Vm =0 for J=0 (In homogeneous magnetic materials).

One difference between electric scalar potential & magnetic scalar potential (Vm)

It is single valued

Conly one value of V associated with

each point in space if

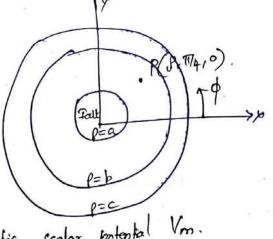
xon reference is assigned).

Vab = - of E. dl. independent of the path.

Vm.

not single valued function of position.

Let as consider cooxial cable



Let $\vec{J} = 0$ on a $we may establish elochic scalar potental <math>V_m$. $\vec{J} = \frac{\vec{J}}{\partial n P}$ and (a

$$\vec{H} = - \nabla V_m.$$

$$\frac{\hat{T}}{\partial \hat{I} \hat{P}} \alpha \vec{p} = - \nabla V_m$$

$$\frac{-1 \frac{\partial V_m}{\partial \phi}}{\frac{\partial V_m}{\partial \phi}} = \frac{I}{2 \pi \rho}$$

$$\frac{\partial V_m}{\partial \phi} = -I$$

$$\frac{\partial V_m}{\partial \phi} = \frac{-I}{2 \pi \rho}$$
where constant of integration is set to zero

If
$$\phi = 0$$
 => $V_m = 0$

$$\phi = 2\pi \Rightarrow V_m = -I$$

$$Perpresents a same point but with different values of V_m .

Conultivalued ness.$$

At P,
$$V_{mp} = \frac{I}{2\pi} \left(\pi I_4 - 2n\pi I \right)$$
.
$$= \frac{I}{2\pi} \left(an - I_4 \right) \cdot \pi$$

$$V_{mp} = I(n-1/8)$$
 where $n=0,\pm 1,\pm 2,\ldots$

In magnetostatic

PHT. dt = I even if J=0 along the path of integration

Every time when we take another lap around I, the integration increase by I.

If no arment is enclosed by the path, then a single valued potential function may be defined.

In general,
$$V_{m a_i b} = \int_{H} H \cdot d\vec{L}$$
 (specified path)

$$\frac{1}{\nabla x H} = \frac{1}{f_0} \left(\nabla x \overrightarrow{A} \right).$$

$$\frac{1}{\nabla x H} = \frac{1}{f_0} \left(\nabla x \nabla x \overrightarrow{A} \right)$$
taking cust twice

 $\nabla x \nabla x \overrightarrow{A} = \nabla (\nabla \cdot \overrightarrow{A}) - \nabla^2 \overrightarrow{A}$ A is on wb/m.

Magnetic Vector potential A, may be determined from differential current elements (no significance of this expression without considering any closed path in which 6) Problem:

Given $H = 20 g^2 a_0^T$ A/m. Determine current density J.

Also determine total current crossing the surface g = 1 m, $0 < \phi < 2\pi$ f

(iii)
$$J = \int J \cdot dJ = \int \int 600 \int 9 d\rho d\rho = 60 \int \frac{\rho^3}{3} \int [\rho]^{2\pi} = 20 \times 2\pi$$

Verily this using Stokes therrem.

this using stokes that
$$\frac{\partial T}{\partial x} = \int_{-\infty}^{\infty} \frac{\partial T}{\partial x} = \int_{-\infty}^$$

... .

7 b) Electric field causes a force to be exerted on a stateoning or morning charge Steady magnetic field -> exerts force only on a morning charge (produced by morning charges) torce on a moving charge: Flector force on a changed particle, F= QE Same dun as Et for a positive charge. If the charge is in motion, the above equation gives the force at any point in its frajectory Changed particle is in motion in a magnetic field of flux donsity, B F= QVXB direction of force is It to both it and B Fapplied is to the dan in which change is moving. _ can never change its velocity. Acceleration Vector is always normal to relocity vector Kinetic energy of particle remains unchanged. Steady magnetic field is incapable of transferring energy to a

Electric field - exerts force on particle which is independent of the dru of progressing charge E effects an energy transfer between field and particle is general. Fince on a moving particle artsing from combined electric & magnetic field. (by superposition) F= Q(F+ vdxB) - Lorentz force equation. Solution is required in deformining 2) proton paths in exclotron

3) plasma characteristics in a magneto hydrodynamic (MHD)

generator charged particle motion in combined electric and magnetic

Torque (or mechanical moment of force) on the loop is the vector product of force F and the moment arm ?

Rectangular bop of length is and width is placed in a uniform magnetic field B.

Fora =
$$\int \int d\vec{l} \times \vec{B}$$

= $\int \int d\vec{l} \times \vec{B} + \int \int d\vec{l} \times \vec{B}$

+ $\int \int d\vec{l} \times \vec{B} + \int \int d\vec{l} \times \vec{B}$

CD of $\partial \vec{b} = d\vec{l}$ are parallel since $\vec{B} = d\vec{l}$ are parallel

Force
$$\vec{F} = \vec{I} \int d\vec{i} \times \vec{B} + \vec{I} \int d\vec{i} \times \vec{B}$$

BC

BC

DA

$$= 2 \int dz \vec{az} \times \vec{B} + \vec{I} \int dz \vec{az} \times \vec{B}$$

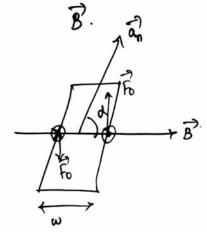
$$= \overrightarrow{F_0} - \overrightarrow{F_0} \qquad \text{where } |\overrightarrow{F_0}| = |\overrightarrow{B}| \underline{I} | \qquad \text{because } \overrightarrow{B} \text{ is}$$

$$\overrightarrow{F} = 0 \qquad \text{i. No force on the loop, when}$$

$$\overrightarrow{B} \text{ is uniform}$$

Accessor, to and - to act at different points on the loop, thereby creating a couple.

Normal to the plane of the loop makes an angle of with



Torque (moment of couple) on the brop 7 = 7xF

|T| = |Fo| w sin d

17 bIlwsind 17 = BIS sind S= lw to log

Magnetic dépôle moment, -) product of ourment and are a 9 the loop. - its direction normal to the loop

T = AxB

Torque is in the direction of assis of solution.

It is directed with the aim of reducing a solthat in and B are en same direction (le at equilibrium).

If loop is perpendicular le magnetic field, torque q sum of forces on the loop will be zero. 8 b) Problem:

1) Two infinitely long straight conductors are located at 200; yes and x=0; y=10 m. Both carry current of 10 mA in positive of direction. Determine force experienced (per meter) between them.

Force per unit length of two infinitely long =
$$F/L = \frac{h_0 I^2}{2\pi d}$$

parallel current corrying

conductors = $\frac{2}{4\pi x_1 o^7} \times (10 \times 10^{-3})$
 $= 20 \times 10^7 \times 10^6$
 $= 20 \times 10^{-12} \times 10^{-12}$
 $= 2 \times 10^{-12} \times 10^{-12}$
 $= 2 \times 10^{-12} \times 10^{-12}$