

Internal Assesment Test - II

Sub:	DIGITAL COMMUNICATION Code:							10EC/TE61			
Date:	08 / 05 / 2017	05 / 2017 Duration: 90 mins Max Marks: 50 Sem: VI Branch					Branch:	ECE(D)/TCE(B)			
Answer Any FIVE FULL Questions											
									OBE		
								Marks	СО	RBT	
1	Explain flat top sampling with necessary waveforms and equations. Discuss aperture effect.							[10]	CO1	L2	
2(a)	A bandpass signal $x(t)$ has the spectrum shown in Figure 1. The signal $x(t)$ is sampled at 25 Hz. Draw the spectrum of the resulting signal. Indicate how the original signal can be reconstructed from the sampled signal.							[05]	CO1	L2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
2(b)	Four message signals bandlimited to 3 kHz, 1 kHz, 1 kHz and 1 kHz are to be transmitted over a channel in TDM fashion. Set up a scheme for realizing this requirement. What should be the speed of the commutator? What is the minimum channel bandwidth required?								[05]	CO1	L3
3(a)	A PCM system uses a uniform quantizer followed by an n-bit encoder. Assuming sinusoidal input, show that $SQNR = 1.76 + 6.02n dB$.								[05]	CO1	L3
3(b)	A compact disc recording system samples each of two stereo signals with a 16 bit analog to digital converter at 44.1 kHz. Determine the output SQNR for a full scale sinusoid. If the CD can record 1 hour music, determine the number of bits recorded on the CD.								[05]	CO1	L3
4	Discuss the need for non-uniform quantizer for speech signals. Explain μ –law and A-law.							[10]	CO1	L1	
5	With neat block diagrams and necessary equations, explain DPCM transmitter and receiver system.							[10]	CO1	L2	
6	Discuss slope overload distortion and granular noise with respect to delta modulation. Derive an expression for maximum output SQNR of a delta modulator assuming sinusoidal input.								[10]	CO1	L3
7	Assuming equiprobable 0s and 1s, derive an expression for the power spectral density of NRZ unipolar signal.								[10]	CO2	L2
8	Derive Nyquist cr Arrive at the ideal s			nless transmis	sion c	of binar	y sy	mbols.	[10]	CO2	L2

```
CMR Institute of Technology
   Dept. of ECETCE
   Digital Communication
          8 5 2017
     Scheme of evaluation.
   S(t) = \sum_{n=1}^{\infty} \chi(nT_s) h(t-nT_s) - - -
                                    (3)
   S(f) = \times_S(f) H(f)
    H(f) = Tsinc (fT) e JTTfT____
                                     (2)
                                     (2)
    Aperture effect
                                     (2)
   Equalizer.
                                    (5)
2a Plot of ×8(f) ---
                                     (3)
26 Commutator Setup.
                                     (1)
    Speed of commutator --
                                     (1)
    Bandwidth Calculation
                                     (1)
    signal power.
                                     (1)
     Quantization noise power -
     SQNR.
                                    (2)
   Rb=nfs-
                                    (3)
      Capacity of CD
```

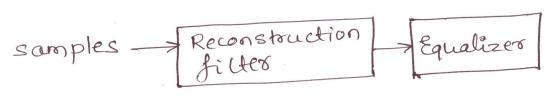
Need for non-uniform quantizer -- (2)2/2 5 Block diagram of transmitter _ --Related Equations. -Description of blocks -Block diagram of receiver -6 Slope overload distortion ---Granular noise - - - -Sanr of delta modulator -H(f) = T sinc(fT) - - $R_{A}(n) = \begin{cases} \frac{a^{2}}{2}, & n=0\\ \frac{a^{2}}{4}, & n\neq 0 \end{cases}$ $S(f) = \frac{a^2}{4} T_b \sin^2(fT_b) + \frac{a^2}{4} S(f) - \frac{a^2}{4}$ Block diagram of PAM system _ - - (3) condition for zero ISI ---Ideal solution to ISI

$$S(t) = \sum_{n=-\infty}^{\infty} \alpha(nTs) h(t-nTs)$$

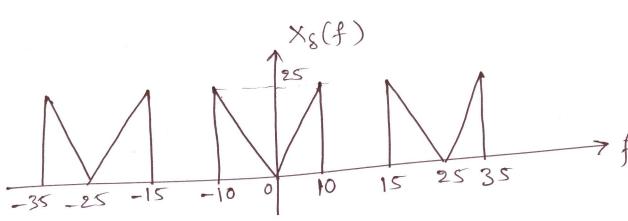
$$s(t) = \sum_{n=-\infty}^{\infty} \alpha(nT_s) \delta(t-nT_s) * h(t)$$

$$S(f) = X_{S}(f) + Cf$$

$$= f \leq X(f - kf_{S}) \cdot T \cdot sinc(fT) \cdot C$$


$$= f \leq X(f - kf_{S}) \cdot T \cdot sinc(fT) \cdot C$$

Tsinc(fT) introduces amplitude distortion.


eintroduces delay of T/2.

This is called aperture effect.

Solution: Equalizer

$$m_4$$
 m_2
 m_1
 m_1
 m_3
 m_3
 m_3
 m_4
 m_4
 m_4
 m_5
 m_6
 m_1
 m_2
 m_3
 m_3
 m_4
 m_5
 m_6
 m_6
 m_6
 m_7
 m_8
 m_8
 m_9
 m_9

Speed of the commutator = 2000 rps.

BW required = 6kH2

За

$$P = \frac{a^2}{2}$$

$$\int^2 = \frac{\Delta^2}{12}$$

$$\Delta = \frac{2a}{2-1}$$

$$\Delta = \frac{2a}{2-1}$$

$$\Delta = \frac{a}{2}$$

$$\Delta^2 = \frac{a^2}{2n}$$

$$\frac{\Delta^2}{12} = \frac{\alpha^2}{32^n}$$

: SQNR =
$$\frac{a^2}{2} - \frac{a^2}{32^n}$$

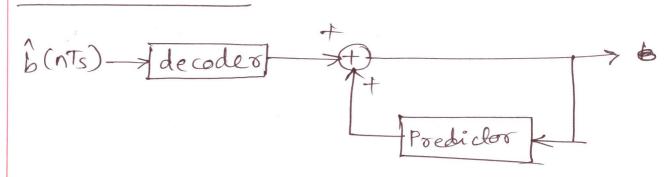
= $\frac{3}{2}$ $\frac{2}{2}$

SANR in dB= 1.76 + 6.02 n

36 SQNR = 1.76+ 6×16 = 97.76 dB. No. of bits = 44.1×10×16×2×3600

$$= 635 MB.$$

- 4 1. To keep SQNR constant étrespertive of 3/6 input signal power
 - 2. To increase the accuracy of AZD conversion. coithout increasing the bit rate.


µ-law

$$\frac{C(|x|)}{2max} = \frac{\ln(1+\mu |x|)}{2max}, \quad 0 \leq \frac{|x|}{2max} \leq 1$$

$$\frac{C(|2|)}{2 \ln \alpha x} = \frac{\left(\frac{A|2|}{2 \ln \alpha x}\right)}{\frac{1}{1 + \ln (A)}}, \quad 0 = \frac{|2|}{2 \ln \alpha x} = \frac{1}{A}$$

$$\frac{1 + \ln \left(\frac{A|2|}{2 \ln \alpha x}\right)}{\frac{1}{1 + \ln (A)}}, \quad \frac{1}{A} = \frac{|2|}{2 \ln \alpha x} = 1.$$

5 DPCM Transmitter

Slope overload distortion

$$2(t) = a cos(z \pi f_t)$$

0

$$\left|\frac{d(a(t))}{dt}\right| = a_0 2 \pi f_0$$

$$\frac{S}{T_S} \ge 2\pi f_0 a_0$$

$$P_{\text{max}} = \frac{a^2}{2}$$

$$=\frac{8}{8}$$

$$\frac{2}{\sqrt{2}} = \frac{12}{\sqrt{2}} = \frac{12}{3}$$

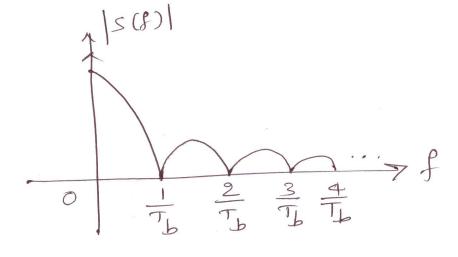
$$R_{A}(0) = E[A_{K}^{2}]$$

$$= \frac{1}{2}0^{2} + \frac{1}{2}a^{2}$$

$$= \frac{a^{2}}{3}$$

$$R_A(n) = E[A_KA_{K-n}]$$

$$n \neq 0$$

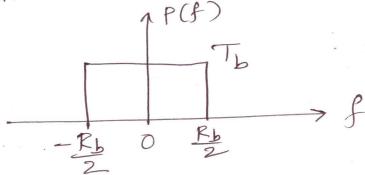

$$= \frac{2}{4}$$

$$V(f) = T_b \operatorname{sinc}(fT_b)$$

$$S(f) = \frac{1}{T_b} |V(f)|^2 \leq R_A(n) e^{-j2\pi f n T_b}$$

$$n = -\infty.$$

$$= \frac{a^2}{4} T_b sinc^2 (fT_b) + \frac{a^2}{4} 8(f)$$


$$y(t) = \mu \stackrel{\otimes}{=} a_{k} p(t-kT_{b})$$

$$y(iT_b) = \mu \stackrel{\circ}{\underset{\kappa=-\infty}{=}} a_{\kappa} p(iT_b - kT_b)$$

For zero ISI,

$$P(iT_b-kT_b) = \begin{cases} 1, i=k \\ 0, i\neq k \end{cases}$$

$$\stackrel{\text{CO}}{\leq} P(f - nR_b) = T_b$$

