

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - II

Sub: DSDV Code: 14EC666

Date: 10 / 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: VI Branch: ECE/TCE

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1 Explain synchronous and asynchronous Static RAMs. Develop a verilog code for pipelined SSRAM. [10] CO4 L2

2 Develop a circuit that computes the function y=ci×x^2, where x is a binary coded input value and ci is a

coefficient stored in a flow through SSRAM. X, ci and y are all signed fixed point values with 8 pre-

binary points and 12 post-binary bit. The index i is also an input to the circuit, encoded as a 12 bit

unsigned integer. Values for x and i arrive at the input during the cycle when a control input, start, is 1.

The circuit should minimize area by using a single a single multiplier to multiply ci by x and then by x

again.

[10] CO4 L2

3 What is Error correction? Obtain ECC for data byte: - 01100001. Find, if received ECC

000111000100 is having error, if so correct it.

[10] CO4 L2

4 Write a short note on :

A) CPLDs. B) FPGA.
[10] CO4 L1

5 For GUMNUT soft core, explain all instruction sets available with example. [10] CO5 L1

6 For given Opcode Pneumonic or code words (for GUMNUT CORE), obtain the Instruction encoded

code word or Opcode Pneumonic respectively.

(1) ADDC R3, R5, 24 (2) MASK R1, R4, R1 (3) 0C9C0 (4) 2ECFC

[10] CO5 L2

7 Develop a Digital design model for interfacing microprocessor (GUMNUT core) or Microcontroller

(8051) with External Memories.
[10] CO5 L3

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - II

Sub: DSDV Code: 14EC666

Date: 10 / 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: VI Branch: ECE/TCE

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1 Explain synchronous and asynchronous Static RAMs. Develop a verilog code for pipelined SSRAM. [10] CO4 L2

2 Develop a circuit that computes the function y=ci×x^2, where x is a binary coded input value and ci is a

coefficient stored in a flow through SSRAM. X, ci and y are all signed fixed point values with 8 pre-

binary points and 12 post-binary bit. The index i is also an input to the circuit, encoded as a 12 bit

unsigned integer. Values for x and i arrive at the input during the cycle when a control input, start, is 1.

The circuit should minimize area by using a single a single multiplier to multiply ci by x and then by x

again.

[10] CO4 L2

3 What is Error correction? Obtain ECC for data byte: - 01100001. Find, if received ECC

000111000100 is having error, if so correct it.

[10] CO4 L2

4 Write a short note on :

A) CPLDs. B) FPGA.
[10] CO4 L1

5 For GUMNUT soft core, explain all instruction sets available with example. [10] CO5 L1

6 For given Opcode Pneumonic or code words (for GUMNUT CORE), obtain the Instruction encoded

code word or Opcode Pneumonic respectively.

(1) ADDC R3, R5, 24 (2) MASK R1, R4, R1 (3) 0C9C0 (4) 2ECFC

[10] CO5 L2

7 Develop a Digital design model for interfacing microprocessor (GUMNUT core) or Microcontroller

(8051) with External Memories.
[10] CO5 L3

Solutions

1

.

Asynchronous SRAM

a. Data stored in 1-bit latch cells

b. Address decoded to enable a given cell

c. Usually use active-low control inputs

d. Not available as components in ASICs or FPGAs

A

CE

WE

OE

D

Synchronous SRAM

a. Clocked storage registers for inputs

b. address, data and control inputs

c. stored on a clock edge

d. held for read/write cycle

Flow-through SSRAM

 no register on

data output

clk

A

en

wr

D_in

D_out

a
1

xx

xx M(a
2
)

a
2

Pipelined SSRAM

 Data output also has a register

 More suitable for high-speed systems

 Access RAM in one cycle, use the data in the next cycle

3 Marks

4 Marks

clk

A

en

wr

D_in

D_out

a
1

xx

xx M(a
2
)

a
2

Verilog code for pipelined SSRAM

reg pipelined_en;

reg [15:0] pipelined_d_out;

...

always @(posedge clk) begin

 if (pipelined_en) d_out <= pipelined_d_out;

 pipelined_en <= en;

 if (en)

 if (wr) begin

 data_RAM([a] <= d_in; pipelined_d_out <= d_in;

 end

 else
 pipelined_d_out <= data_RAM[a];

end

3 Marks

2

.

 Compute function

 Coefficient stored in flow-through SSRAM

 12-bit unsigned integer index for i

 x, y, ci 20-bit signed fixed-point

 8 pre- and 8 post-binary point bits

 Use a single multiplier

 Multiply ci × x × x

D_in

A

SSRAM

en

wr

D_out

clk

D

ce

Q

clk

D

ce

Q

clk

× y

i

c_in

c_ram_wr

x_ce

c_ram_en

x

y_ce

mult_sel

clk

0

1

0

1

5 Marks

module scaled_square (output reg signed [7:-12] y,

 input signed [7:-12] c_in, x,

 input [11:0] i,

 input start,

 input clk, reset);

 wire c_ram_wr;

 reg c_ram_en, x_ce, mult_sel, y_ce;

 reg signed [7:-12] c_out, x_out;

 reg signed [7:-12] c_RAM [0:4095];

 reg signed [7:-12] operand1, operand2;

 parameter [1:0] step1 = 2'b00, step2 = 2'b01, step3 = 2'b10;

 reg [1:0] current_state, next_state;

 assign c_ram_wr = 1'b0;

always @(posedge clk) // c RAM - flow through

 if (c_ram_en)

 if (c_ram_wr) begin

 c_RAM[i] <= c_in;

 c_out <= c_in;

 end

 else
 c_out <= c_RAM[i];

 always @(posedge clk) // y register

 if (y_ce) begin

 if (!mult_sel) begin

 operand1 = c_out;

 operand2 = x_out;

 end

 else begin
 operand1 = x_out;

 operand2 = y;

 end
 y <= operand1 * operand2;

 end

5 Marks

3 Error-Correcting Codes (ECC)

 Allow identification of the flipped bit

 Hamming Codes

 E.g., for single-bit-error correction of N-bit word, need log2N + 1 extra bits

 Example: 8-bit word, d1... d8

 12-bit ECC code, e1...e12

e1, e2, e4, e8 are check bits, the rest data

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
10

e
11

e
12

4Marks

 Every data bit covered by two or more check bits

 On write: Compute check bits and store with data

 On read: Recompute check bits and XOR with read check bits

 result called the syndrome

 0000 => no error

 If data bit flipped

 covering bits of syndrome are 1

 = binary code of flipped ECC bit

 If stored check bit flipped

 that bit of syndrome is 1

 On error, unflip bit and rewrite memory location

ii) The check bits are

 iii) Determine whether there is an error in the ECC word

 000111000100, and if so, correct it.

 solution The check bits computed from the data bits of the ECC word are

 The syndrome is 1101 ⊕ 1000 _ 0101. Thus, there is an error in bit e5 of the

 read ECC. That bit should be flipped back from 0 to 1, giving the corrected

 ECC word 000111010100.

3Marks

3Marks

4 Complex PLDs (CPLDs)

5Marks

 Cramming multiple PALs into an IC

 Programmable interconnection network

 Use flash RAM technology to store configuration

Each of the PAL structures consists of an AND array and a number of embedded macrocells

(M/Cs in the figure). The macrocells contain OR gates, mutiplexers and flip-flops, allowing

choice among combinational or registered connections to other elements within the component,

with or without logical negation, choice of initialization for flip-flops, and so on. They are

essentially expanded forms of the simple macrocell shown in above, but without the direct

connections to external pins. Instead, the external pins are connected to an I/O block, which

allows selection among macrocell outputs to drive each pin. The network interconnecting the

PAL structures allows each PAL to use feedback connections from other PALs as well as

inputs from external pins. As well as providing more circuit resources than simple PLDs,

modern CPLDs are typically programmed differently. Rather than using EPROMlike

technology, they use SRAM cells to store configuration bits that control connections in the

AND-OR arrays and the select inputs of multiplexers. Configuration data is stored in

nonvolatile flash RAM within the CPLD chip, and is transferred into the SRAM when power is

applied. Separate pins are provided on the chip for writing to the flash RAM, even while the

chip is connected in the final system. Thus, designs using CPLDs can be upgraded by

reprogramming the configuration information.

FPGA

5marks

LB
RAM

RAM

RAM

LB LB LB

LB LB LB LB

LB LB LB LB

LB LB LB LB

LB LB LB LB

LB LB LB LB

LB LB

LB LB

LB LB

LB LB

LB LB

LB LB

…

…

…

…

… … … … … ……

IO

IO

IO

IO

IO

IO

IO

IO

IO

IO

IO

IO

IO IO IO IO IO IO

IO IO IO IO IO IO

… … … …

…

…

…

…

… …

… …

… …

…

…

… …

…

…

D

S

R

CE

Q

clk

I4

LUT

I3

I2

O

I1

D

S

R

CE

Q

clk

I4

LUT

I3

I2

O

I1

COUT

YB

Y

YQ

XB

X

XQ

G4

G3

G2

G1

Carry

and

Control

Logic

Carry

and

Control

Logic

F4

F3

F2

F1

F5IN

BY

SR

BX

CIN

CE

CLK LOGIC BLOCK

D

CE

Q

clk

D

CE

Q

clk

0

1

D

CE

Q

clk

0

1

+V

IO BLOCK

The basic elements within logic blocks are small 1-bit-wide asynchronous RAMs called lookup

tables (LUTs). The LUT address inputs are connected to the inputs of the logic block. The

content of an LUT determines the values of a Boolean function of the inputs. By programming

the LUT content differently, we can implement any Boolean function of the inputs. The logic

blocks also contain one or more flipflops and various multiplexers and other logic for selecting

data sources and for connecting data to adjacent logic blocks. The logic block contains two

such slices, together with a small amount of additional logic. Each slice consists of two 4-input

LUTs, each of which can be programmed to implement any function of the four inputs. The

carry and control logic consists of circuitry to combine the LUT outputs, an XOR gate and an

AND gate for implementing adders and multipliers, as well as multiplexers that can be used to

implement a fast carry chain.

The I/O block of an FPGA is typically organized as shown. The select inputs of the

multiplexers are programmed to control whether the output is registered or combinational. The

top flip-flop and multiplexer control the high-impedance state of the tristate driver that drives

the pin as an output, and the middle flip-flop and multiplexer drive the output value. The output

driver is programmable, allowing selection of logic levels (regular 5V TTL, low voltage TTL,

or others) and control of the slew rate, that is, rate of voltage change at the output.

5 Gumnut Instruction sets

10Marks

6

MASK R1,R4,R1 => 38c27

0C9C0 => SUBB R1,R1,192

2.5Marks

2.5Marks

2.5Marks

2.5Marks

7 GUMNUT memory Interface

10 Marks

inst_adr_o

inst_dat_i

rst_i

gumnut data

SRAM

inst_cyc_o

inst_stb_o

inst_ack_i

data_adr_o

data_dat_i

data_dat_o

data_cyc_o

data_stb_o

data_ack_i

data_we_o

adr

dat_o

dat_i

en

we

adr

dat_o

en

clk_i

clk_i

instruction

ROM

clk_i

D Q

clk

DQ

clk

always @(posedge clk) // Instruction memory

 if (inst_cyc_o && inst_stb_o) begin

 inst_dat_i <= inst_ROM[inst_adr_o[10:0]];

 inst_ack_i <= 1'b1;

 end

 else

 inst_ack_i <= 1'b0;

always @(posedge clk) // Data memory

 if (data_cyc_o && data_stb_o)

 if (data_we_o) begin

 data_RAM[data_adr_o] <= data_dat_o;

 data_dat_i <= data_dat_o;

 data_ack_i <= 1'b1;

 end

 else begin

 data_dat_i <= data_RAM[data_adr_o];

 data_ack_i <= 1'b1;

 end

 else

 data_ack_i <= 1'b0;

(OR)

MICROCONTROLLER 8051 memory interface

A(15..8)

A(7..0)

CE

WE

OE

D

A(16)

D

LE

P2

Q

PSEN

ALE

8051 SRAM

RD

WR

P0

The 8051 can access up to 64K bytes of instruction memory and 64K bytes of data memory, however, there are

only 256 bytes of data memory and 4K to 16K bytes of instruction memory on the chip. The chip has two 8-bit

input/output ports, P0 and P2, as well as a number of control signals that can be used to connect to external

memory. Figure shows how they would be used to connect to an external 128K x 8-bit asynchronous SRAM, in

which the lower 64K locations are used for instructions and the upper 64K locations for data. P2 provides the most

significant address byte, and P0 is multiplexed with the least significant address byte and instruction and data

bytes. Since information transfer on P0 is bidirectional, tristate drivers are used internally in the microcontroller

and in the memory data pins.

The 8051 activates the address-latch enable (ALE) signal when it drives the least significant address bits on P0.

We provide an 8-bit latch to hold these bits for the remainder of the memory access cycle. During an instruction

read access, the 8051 activates the program-store enable (!PSEN) signal, driving it to a low logic level. At other

times, including data accesses, the signal is at a high logic level. Hence, we can use this signal directly as the most

significant address bit to distinguish between instruction and data accesses to the external memory. The 8051

activates the RD signal during data read accesses and the (!WR) signal during data write accesses. We use !WR

directly to control the memory’s write enable (!WE) signal. However, we need a small amount of glue logic to

derive the chip enable (!CE) and output enable (!OE) signals.

