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1 (a) List and explain the scheduling concepts which are used to analyze the performance of any scheduling 

algorithm. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

b) List the different types of process interaction and explain them in brief. 

 

 

 

 

 

2 (a) 

 

Explain process scheduling methods for real time applications. 

Real-Time Scheduling  
Real-time scheduling must handle two special scheduling constraints while trying to meet the deadlines of 
applications. First, the processes within a real-time application are interacting processes, so the deadline of an 
application should be translated into appropriate deadlines for the processes. Second, processes may be periodic, 
so different instances of a process may arrive at fixed intervals and all of them have to meet their deadlines. 
Example 7.10 illustrates these constraints; in this section, we discuss techniques used to handle them. 

 

Process Precedences and Feasible Schedules  
Processes of a real-time application interact among themselves to ensure that they perform their actions in a 
desired order (see Section 6.1).We make the simplifying assumption that such interaction takes place only at the 
start or end of a process. It causes dependences between processes, whichmust be taken into account while 
determining deadlines and while scheduling. We use a process precedence graph (PPG) to depict such 
dependences between processes. 

 
Process Pi is said to precede process Pj if execution of Pi must be completed beforePj can begin its execution. The notationPi → 
Pj shall indicate that process Pi directly precedes process Pj . The precedence relation is transitive; i.e., Pi → Pj andPj → Pk 
implies thatPi precedesPk. The notationPi→* Pk is used to indicate that process Pi directly or indirectly precedes Pk. A process 
precedence graph is a directed graph G ≡ (N, E) such that Pi ∈ N represents a process, and an edge (Pi , Pj ) ∈ E implies Pi → Pj 
. Thus, a path Pi , . . . , Pk in PPG implies Pi→* Pk. A process Pk is a descendant of Pi if Pi→* Pk. 
 
A hard real-time system as one that meets the response requirement of a real-time application in a guaranteed 
manner, even when fault tolerance actions are required. This condition implies that the time required by the OS 
to complete operation of all processes in the application does not exceed the response requirement of the 
application. On the other hand, a soft real-time system meets the response requirement of an application only in a 
probabilistic manner, and not necessarily at all times. The notion of a feasible schedule helps to differentiate 
between these situations. 



 
Feasible Schedule A sequence of scheduling decisions that enables the processes of an application to operate in 
accordance with their precedences and meet the response requirement of the application. 

 

Deadline Scheduling  
Two kinds of deadlines can be specified for a process: a starting deadline, i.e., the latest instant of time by which 
operation of the process must begin, and a completion deadline, i.e., the time by which operation of the process 
must complete. 
 
Deadline Estimation A system analyst performs an in-depth analysis of a realtime application and its response 
requirements. Deadlines for individual processes are determined by considering process precedences and working 
backward from the response requirement of the application. Accordingly, Di , the completion deadline of a 
process Pi, is 
 
 

 

Where Dapplication is the deadline of the application, xk is the service time of process Pk, and descendant(i) is the 

set of descendants of Pi in the PPG, i.e., the set of all processes that lie  
on some path between Pi and the exit node of the PPG. Thus, the deadline for a process Pi is such that if it is met, 
all processes that directly or indirectly depend on Pi can also finish by the overall deadline of the application. 
This method is illustrated in Example 7.11. 
 
Determining Process Deadlines Example 7.11  
Each circle is a node of the graph and represents a process. The number in a circle indicates the service time of a 
process. An edge in the PPG shows a precedence constraint. Thus, process P2 can be initiated only after process  
P1 completes, process P4 can be initiated only after processes P2 and P3 complete, etc. We assume that 
processes do not perform I/O operations and are serviced in a nonpreemptive manner. The total of the service 
times of the processes is 25 seconds. If the application has to produce a response in 25 seconds, the deadlines of 
the processes would be as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure shows the PPG of a real-time application containing 6 processes. 
 

 

Process P1 P2 P3 P4 P5 P6 
Deadline 8 16 16 20 20 25 

 



A practical method of estimating deadlines will have to incorporate several other constraints as well. For 
example, processes may perform I/O. If an I/O operation of one process can be overlapped with execution of 
some independent process, the deadline of its predecessors (and ancestors) in the PPG can be relaxed by the 
amount of I/O overlap. For example, processes P2 and P3 in Figure 7.13 are independent of one another. If the 
service time of P2 includes 1 second of I/O time, the deadline of P1 can be made 9 seconds instead of 8 seconds 
if the I/O operation of P2 can overlap with P3‘s processing. However, overlapped execution of processes must 
consider resource availability as well. Hence determination of deadlines is far more complex than described here. 

 

Earliest Deadline First (EDF) Scheduling As its name suggests, this policy always selects the process with the 
earliest deadline. Consider a set of real-time processes that do not perform I/O operations. If seq is the sequence 
in which processes are serviced by a deadline scheduling policy and pos(Pi ) is the position of process Pi in seq, 
a deadline overrun does not occur for process Pi only if the sum of its own service time and service times of all 
processes that precede it in seq does not exceed its own deadline, i.e., 
 
 
 

 

where xk is the service time of process Pk, and Di is the deadline of process Pi. If this condition is not satisfied, a 
deadline overrun will occur for process Pi. When a feasible schedule exists, it can be shown that Condition 7.3 
holds for all processes; i.e., a deadline overrun will not occur for any process. Table 7.4 illustrates operation of 
the EDF policy for the deadlines of Example 7.11. The notation P4: 20 in the column processes in system 
indicates that process P4 has the deadline 20. Processes P2, P3 and P5, P6 have identical deadlines, so three 
schedules other than the one shown in Table 7.4 are possible with EDF scheduling. None of them would incur 
deadline overruns. 

 

The primary advantages of EDF scheduling are its simplicity and nonpreemptive nature, which reduces the 
scheduling overhead. EDF scheduling is a good policy for static scheduling because existence of a feasible 
schedule, which can be checked a priori, ensures that deadline overruns do not occur. It is also a good dynamic 
scheduling policy for use in soft real-time system; however, the number of processes that miss their deadlines is 
unpredictable. The next example illustrates this aspect of EDF scheduling. 

 

Operation of Earliest Deadline First (EDF) Scheduling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Rate Monotonic Scheduling  
When processes in an application are periodic, the existence of a feasible schedule can be determined in an 
interesting way. Consider three independent processes that do not perform I/O operations: 
 



Process P1 repeats every 10 ms and needs 3 ms of CPU time. So the fraction of the CPU‘s time that it uses is 
3/10, i.e., 0.30. The fractions of CPU time used by P2 and P3 are analogously 5/15 and 9/30, i.e., 0.33 and 0.30. 
They add up to 0.93, so if the CPU overhead of OS operation is negligible, it is feasible to service these three 
processes. In general, a set of periodic processes P1, . . . , Pn that do not perform I/O operations can be serviced 
by a hard real-time system that has a negligible overhead if 
 
 
 
where Ti is the period of Pi and xi is its service time. 
 
 
 
To schedule these processes so that they can all operate without missing their deadlines. The rate monotonic 
(RM) scheduling policy does it as follows: It determines the rate at which a process has to repeat, i.e., the 
number of repetitions per second, and assigns the rate itself as the priority of the process. It now employs a 
priority-based scheduling technique to perform scheduling. This way, a process with a smaller period has a 
higher priority, which would enable it to complete its operation early. 

 

In the above example, priorities of processes P1, P2, andP3 would be 1/0.010, 1/0.015, and 1/0.025, i.e., 100, 67, 
and 45, respectively. Figure 7.14 shows how these processes would operate. Process P1 would be scheduled first. 
It would execute once and become dormant after 3 ms, because x1 = 3 ms. Now P2 would be scheduled and 
would complete after 5 ms. P3 would be scheduled now, but it would be preempted after 2 ms because P1 
becomes ready for the second time, and so on. As shown in Figure 7.14, process P3 would complete at 28 ms. By 
this time, P1 has executed three times and P2 has executed two times. 

 

Rate monotonic scheduling is not guaranteed to find a feasible schedule in all situations. For example, if process 

P3 had a time period of 27 ms, its priority would be different; however, relative priorities of the processes would 
be unchanged, so P3 would complete at 28 ms as before, thereby suffering a deadline overrun of 1ms. A feasible 
schedule would have been obtained if P3 had been scheduled at 20 ms and P1 at 25 ms; however, it is not 
possible under RM scheduling because processes are scheduled in a priority-based manner. Liu and Layland 

(1973) have shown that RM scheduling may not be able to avoid deadline overruns if the total fraction of CPU 
time used by the processes according to Eq. (7.4) exceeds m(21/m − 1), where m is the number of processes. This 
expression has a lower bound of 0.69, which implies that if an application has a large number of processes, RM 

scheduling may not be able to achieve more than 69 percent CPU utilization if it is to meet deadlines of 
processes. 
 

  

 

 

 

 

 

 



3 (a)  Write a program to illustrate the use of pthreads in the real time data logging application.  

 

#include <pthread.h> 
 #include <stdio.h> 
 
int size, buffer[100], no_of_samples_in_buffer; int main()  
{  
pthread_t id1, id2, id3; 
 
pthread_mutex_t buf_mutex, condition_mutex; pthread_cond_t buf_full, 

buf_empty; pthread_create(&id1, NULL, move_to_buffer, NULL); 

pthread_create(&id2, NULL, write_into_file, NULL); 

pthread_create(&id3, NULL, analysis, NULL); pthread_join(id1, NULL); 
 
pthread_join(id2, NULL); pthread_join(id3, 

NULL); pthread_exit(0);  
}  
void *move_to_buffer()  
{ 
 
/* Repeat until all samples are received */ /* If no space in 

buffer, wait on buf_full */ 
 
/* Use buf_mutex to access the buffer, increment no. of samples */ /* Signal 
buf_empty */  
pthread_exit(0);  
}  
void *write_into_file()  
{ 
 
/* Repeat until all samples are written into the file */ /* If no data in 
buffer, wait on buf_empty */ 
 
/* Use buf_mutex to access the buffer, decrement no. of samples */ /* Signal buf_full 
*/  
pthread_exit(0); 

}  
void *analysis()  
{  
/* Repeat until all samples are analyzed */ 
 
/* Read a sample from the buffer and analyze it */ pthread_exit(0);  
} 

 
 

    

 

 

 



(b) Explain process schedule with neat diagram. 

Scheduling, very generally, is the activity of selecting the next request to be serviced by a server. Figure below is 
a schematic diagram of scheduling. The scheduler actively considers a list of pending requests for servicing and 
selects one of them. The server services the request selected by the scheduler. This request leaves the server 
either when it completes or when the scheduler preempts it and puts it back into the list of pending requests. In 
either situation, the scheduler selects the request that should be serviced next. From time to time, the scheduler 
admits one of the arrived requests for active consideration and enters it into the list of pending requests. Actions 
of the scheduler are shown by the dashed arrows in Figure . 

 

 

 

 

 

 

 

Events related to a request are its arrival, admission, scheduling, preemption, and completion 

4 (a) With a neat diagram explain the working and functions of long, medium and short term 

scheduling in a time sharing system. 

Long-, Medium-, and Short-Term Schedulers 
These schedulers perform the following functions: 

 
• Long-term scheduler: Decides when to admit an arrived process for scheduling, depending on its nature 
(whether CPU-bound or I/O-bound) and on availability of resources like kernel data structures and disk space for 
swapping.  

 
• Medium-term scheduler: Decides when to swap-out a process from memory and when to load it back, so that a 
sufficient number of ready processes would exist in memory.  

 
• Short-term scheduler: Decides which ready process to service next on the CPU and for how long. Thus, the 
short-term scheduler is the one that actually selects a process for operation. Hence it is also called the process 
scheduler, or simply the scheduler.  

 
Figure below shows an overview of scheduling and related actions. The operation of the kernel is interrupt-driven. 

Every event that requires the kernel‘s attention causes an interrupt. 
 

 

 



 

 

 

 

 

 

 
 

 
 
Long-Term Scheduling The long-term scheduler may defer admission of a request for two reasons: it may not 
be able to allocate sufficient resources like kernel data structures or I/O devices to a request when it arrives, or it 
may find that admission of a request would affect system performance in some way; e.g., if the system currently 
contained a large number of CPU-bound requests, the scheduler might defer admission of a new CPU-bound 
request, but it might admit a new I/O-bound request right away. 

 

Long-term scheduling was used in the 1960s and 1970s for job scheduling because computer systems had limited 
resources, so a long-term scheduler was required to decide whether a process could be initiated at the present 
time. It continues to be important in operating systems where resources are limited. It is also used in systems 
where requests have deadlines, or a set of requests are repeated with a known periodicity, to decide when a 
process should be initiated to meet response requirements of applications. Long-term scheduling is not relevant 
in other operating systems. 
 
Medium-Term Scheduling Medium-term scheduling maps the large number of requests that have been admitted 
to the system into the smaller number of requests that can fit into the memory of the system at any time. Thus its 
focus is on making a sufficient number of ready processes available to the short-term scheduler by suspending or 
reactivating processes. The medium term scheduler decides when to swap out a process from memory and when 
to swap it back into memory, changes the state of the process appropriately, and enters its process control block 
(PCB) in the appropriate list of PCBs. The actual swapping-in and swapping-out operations are performed by the 
memory manager. 

 

The kernel can suspend a process when a user requests suspension, when the kernel runs out of free memory, or 
when it finds that the CPU is not likely to be allocated to the process in the near future. In time-sharing systems, 
processes in blocked or ready states are candidates for suspension. 

 

Short-Term Scheduling Short-term scheduling is concerned with effective use of the CPU. It selects one 
process from a list of ready processes and hands it to the dispatching mechanism. It may also decide how long 
the process should be allowed to use the CPU and instruct the kernel to produce a timer interrupt accordingly. 
 

    

 

 

 

 

 



(b)  Explain briefly the fundamental techniques of scheduling. 

Fundamental Techniques of Scheduling  
Schedulers use three fundamental techniques in their design to provide good user service or high performance of 
the system: 

 

• Priority-based scheduling: The process in operation should be the highest priority process requiring use of the 
CPU. It is ensured by scheduling the highest-priority ready process at any time and preempting it when a process 
with a higher priority becomes ready. multiprogramming OS assigns a high priority to I/O-bound processes; this 
assignment of priorities provides high throughput of the system.  

 

• Reordering of requests: Reordering implies servicing of requests in some order other than their arrival order. 
Reordering may be used by itself to improve user service, e.g., servicing short requests before long ones reduces 
the average turnaround time of requests. Reordering of requests is implicit in preemption, which may be used to 
enhance user service, as in a time-sharing system, or to enhance the system throughput, as in a 
multiprogramming   
system.  

 

• Variation of time slice: When time-slicing is used, η = δ/(δ + σ) where η is the CPU efficiency, δ is the time 
slice and σ is the OS overhead per scheduling decision. Better response times are obtained when smaller values 
of the time slice are used; however, it lowers the CPU efficiency because considerable process switching 
overhead is incurred. To balance CPU efficiency and response times, an OS could use different values of δ for 
different requests—a small value for I/O-bound requests and a large value for CPU-bound requests—or it could 
vary the value of δ for a process when its behavior changes from CPU-bound to I/O-bound, or from I/O bound to 
CPU-bound.  
 

5 (a) List the events occur during the operation of OS. With a neat diagram discuss the event handling 

actions of kernel. 
 

The following events occur during the operation of an OS:  
1. Process creation event: A new process is created.   
2. Process termination event: A process completes its operation.   
3. Timer event: The timer interrupt occurs.   
4. Resource request event: Process makes a resource request.   
5. Resource release event: A process releases a resource.   
6. I/O initiation request event: Process wishes to initiate an I/O operation.   
7. I/O completion event: An I/O operation completes.   
8. Message send event: A message is sent by one process to another.   
9. Message receive event: A message is received by a process.   
10. Signal send event: A signal is sent by one process to another.   
11. Signal receive event: A signal is received by a process.   
12. A program interrupt: The current instruction in the running process malfunctions.   
13. A hardware malfunction event: A unit in the computer‘s hardware malfunctions.  
 
 



The timer, I/O completion, and hardware malfunction events are caused by situations that are external to the 

running process. All other events are caused by actions in the running process. The kernel performs a standard 

action like aborting the running process when  
events 12 or 13 occur. 
 
 
 
   
 
 
 
 
 
 
 
 
 
 

Event handling actions of the kernel. 

When a process releases a resource, an unblock action is performed if some other process is waiting for the 

released resource, followed by scheduling and dispatching because the unblocked process may have a higher 

priority than the process that released the resource. Again, scheduling is skipped if no process is unblocked 

because of the event. 
 
 

 (b)  Explain with a neat diagram, the different states and transitions of process in UNIX Operating 

system.   

 
A process in the running state is put in the ready state the moment its execution is interrupted. A system process 
then handles the event that caused the interrupt. If the running process had itself caused a software interrupt by 
executing an <SI_instrn>, its state may further change to blocked if its request cannot be granted immediately. In 
this model a user process executes only user code; it does not need any special privileges. A system process may 
have to use privileged instructions like I/O initiation and setting of memory protection information, so the system 
process executes with the CPU in the kernel mode. Processes behave differently in the Unix model. When a 
process makes a system call, the process itself proceeds to execute the kernel code meant to handle the system 
call. To ensure that it has the necessary privileges, it needs to execute with the CPU in the kernel mode. A mode 
change is thus necessary every time a system call is made. The opposite mode change is necessary after 
processing a system call. Similar mode changes are needed when a process starts executing the interrupt servicing 
code in the kernel because of an interrupt, and when it returns after servicing an interrupt.  
 
The Unix kernel code is made reentrant so that many processes can execute it concurrently. This feature takes 
care of the situation where a process gets blocked while executing kernel code, e.g., when it makes a system call 
to initiate an I/O operation, or makes a request that cannot be granted immediately. To ensure reentrancy of code, 
every process executing the kernel code must use its own kernel stack. This stack contains the history of function 
invocations since the time the process entered the kernel code. If another process also enters the kernel code, the 
history of its function invocations will be maintained on its own kernel stack. Thus, their operation would not 
interfere. In principle, the kernel stack of a process need not be distinct from its user stack; however, distinct 



stacks are used in practice because most computer architectures use different stacks when the CPU is in the 
kernel and user modes. Unix uses two distinct running states. These states are called user running and kernel 
running states. A user process executes user code while in the user running state, and kernel code while in the 
kernel running state. It makes the transition from user running to kernel running when it makes a system call, or 
when an interrupt occurs. It may get blocked while in the kernel running state because of an I/O operation or non 
availability of a resource. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Process state transitions in Unix. 
 

6 (a)  Explain briefly Kernel level, user level and hybrid threads, specifying advantages and 
disadvantages. 
 

Kernel-Level Threads 
 
A kernel-level thread is implemented by the kernel. Hence creation and termination of kernel-level threads, and 

checking of their status, is performed through system calls. Figure 3.14 shows a schematic of how the kernel 

handles kernel-level threads. When a process makes a create_thread system call, the kernel creates a thread, 

assigns an id to it, and allocates a thread control block (TCB). The TCB contains a pointer to the PCB of the 

parent process of the thread. 

 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
TCB to check whether the selected thread belongs to a different process than the interrupted thread. If so, it saves 



the context of the process to which the interrupted thread belongs, and loads the context of the process to which 

the selected thread belongs. It then dispatches the selected thread. However, actions to save and load the process 

context are skipped if both threads belong to the same process. This feature reduces the switching overhead, 

hence switching between kernel-level threads of a process could be as much as an order of magnitude faster, i.e., 

10 times faster, than switching between processes. 

 

Advantages and Disadvantages of Kernel-Level Threads 
 
A kernel-level thread is like a process except that it has a smaller amount of state information. This similarity is 

convenient for programmers—programming for threads is no different from programming for processes. In a 

multiprocessor system, kernel-level threads provide parallelism, as many threads belonging to a process can be 

scheduled simultaneously, which is not possible with the user-level threads described in the next section, so it 

provides better computation speedup than user-level threads. 

 

However, handling threads like processes has its disadvantages too. Switching between threads is performed by 

the kernel as a result of event handling. Hence it incurs the overhead of event handling even if the interrupted 

thread and the selected thread belong to the same process. This feature limits the savings in the thread switching 

overhead. 

 
 

 

User-Level Threads   
User-level threads are implemented by a thread library, which is linked to the code of  

 
a process. The library sets up the thread implementation arrangement shown in Figure 5.11(b) without involving 

the kernel, and itself interleaves operation of threads in the process. Thus, the kernel is not aware of presence of 

user-level threads in a process; it sees only the process. Most OSs implement the pthreads application program 

interface provided in the IEEE POSIX standard in this manner. 

 

Scheduling of User-Level Threads 
 
Figure below is a schematic diagram of scheduling of user-level threads. The thread library code is a part of each 

process. It performs ―scheduling‖ to select a thread, and organizes its execution. We view this operation as 

―mapping‖ of the TCB of the selected thread into the  
PCB of the process. 
 
 
The thread library uses information in the TCBs to decide which thread should operate at any time. To 

―dispatch‖ the thread, the CPU state of the thread should become the CPU state of the process, and the process 

stack pointer should point to the thread‘s stack. Since the thread library is a part of a process, the CPU is in the 

user mode. Hence a thread cannot be dispatched by loading new information into the PSW; the thread library has 

to use nonprivileged instructions to change PSW contents. Accordingly, it loads the address of the thread‘s stack 

into the stack address register, obtains the address contained in the program counter (PC) field of the thread‘s 

CPU state found in its TCB, and executes a branch instruction to transfer control to the instruction which has this 

address. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  Scheduling of user-level threads. 

 

Advantages and Disadvantages of User-Level Threads 
 
Thread synchronization and scheduling is implemented by the thread library. This arrangement avoids the 

overhead of a system call for synchronization between threads, so the thread switching overhead could be as 

much as an order of magnitude smaller than in kernel-level threads. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Actions of the thread library (N,R,B indicate running, ready, and blocked). 
 
 

This arrangement also enables each process to use a scheduling policy that best suits its nature. A process 

implementing a real-time application may use priority-based scheduling of its threads to meet its response 

requirements, whereas a process implementing a multithreaded server may perform round-robin scheduling of its 

threads. However, performance of an application would depend on whether scheduling of user-level threads 

performed by the thread library is compatible with scheduling of processes performed by the kernel. 
 
For example, round-robin scheduling in the thread library would be compatible with either round-robin 

scheduling or priority-based scheduling in the kernel, whereas priority-based scheduling would be compatible 

only with priority-based scheduling in the kernel. 

 

Hybrid Thread Models   
A hybrid thread model has both user-level threads and kernel-level threads and a  

 



method of associating user-level threads with kernel-level threads. Different methods of associating user- and 

kernel-level threads provide different combinations of the low switching overhead of user-level threads and the 

high concurrency and parallelism of kernel-level threads. 

 

Figure illustrates three methods of associating user-level threads with kernel-level threads. The thread library creates 

user-level threads in a process and associates a thread control block (TCB) with each user-level thread. The kernel 

creates kernel-level threads in a process and associates a kernel thread control block (KTCB) with each kernel-level 

thread. In 

the many-to-one association method, a single kernel-level thread is created in a process by the kernel and all 

userlevel threads created in a process by the thread library are associated with this kernel-level thread. This 

method of association provides an effect similar to mere user-level threads: User-level threads can be concurrent 

without being parallel, thread switching incurs low overhead, and blocking of a user-level thread leads to 

blocking of all threads in the process. 

 

In the one-to-one method of association, each user-level thread is permanently mapped into a kernel-level thread. 

This association provides an effect similar to mere kernel-level threads: Threads can operate in parallel on 

different CPUs of a multiprocessor system; however, switching between threads is performed at the kernel level 

and incurs high overhead. Blocking of a user-level thread does not block other user-level threads of the process 

because they are mapped into different kernel-level threads. 

The many-to-many association method permits a user-level thread to be mapped into different kernel-level 
threads at different times. 
 
 
It provides parallelism between user-level threads that are mapped into different kernel-level threads at the same 

time, and provides low overhead of switching between user-level threads that are scheduled on the same kernel-

level thread by the thread library. However, the many-to-many association method requires a complex 

implementation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  (a) Many-to-one; (b) one-to-one; (c) many-to-many associations in hybrid threads. 

 



 
(b)  Explain race condition with an example. 
 
A race condition is an undesirable situation that occurs when a device or system attempts to perform two or more 
operations at the same time, and the outcome depends on the order of execution of processes. But because of the 
nature of the device or system, the operations must be done in the proper sequence to be done correctly.  
 
Suppose for a moment that two processes need to perform a bit flip at a specific memory location. Under normal 
circumstances the operation should work like this: 
 

Process 1 Process 2 Memory Value 
Read value   0 

Flip value   1 

  Read value 1 

  Flip value 0 

 
In this example, Process 1 performs a bit flip, changing the memory value from 0 to 1. Process 2 then performs a 
bit flip and changes the memory value from 1 to 0. 
If a race condition occurred causing these two processes to overlap, the sequence could potentially look more like 
this: 

Process 1 Process 2 Memory Value 
Read value   0 

  Read value 0 

Flip value   1 

  Flip value 1 

 
In this example, the bit has an ending value of 1 when its value should be 0. This occurs because Process 2 is 
unaware that Process 1 is performing a simultaneous bit flip. 
 
 
7 (a)  List out the Non-Preemptive and Preemptive scheduling algorithms along with the advantages and 
disadvantages for each. 
 

Nonpreemptive Scheduling Policies 

 
In nonpreemptive scheduling, a server always services a scheduled request to completion. Thus, scheduling is 
performed only when servicing of a previously scheduled request is completed and so preemption of a request as 
shown in Figure 7.1 never occurs. Nonpreemptive scheduling is attractive because of its simplicity—the 
scheduler does not have to distinguish between an unserviced request and a partially serviced one. Since a 
request is never preempted, the scheduler‘s only function in improving user service or system performance is 
reordering of requests. The three nonpreemptive scheduling policies are: 

 

 First-come, first-served (FCFS) scheduling 

Requests are scheduled in the order in which they arrive in the system. The list of pending requests is organized 

as a queue. The scheduler always schedules the first request in the list. An example of FCFS scheduling is a 

batch processing system in which jobs are ordered according to their arrival times (or arbitrarily, if they arrive at 

exactly the same time) and results of a job are released to the user immediately on completion of the job.  

   



 Shortest request next (SRN) scheduling  
Use of the SRN policy faces several difficulties in practice. Service times of processes are not known to the 
operating system a priori, hence the OS may expect users to provide estimates of service times of processes. 
However, scheduling performance would be erratic if users do not possess sufficient experience in estimating 
service times, or they manipulate the system to obtain better service by giving low service time estimates for their 
processes. The SRN policy offers poor service to long processes, because a steady stream of short processes 
arriving in the system can starve a long process. 

 

 

 Highest response ratio next (HRN) scheduling  
The response ratio of a newly arrived process is 1. It keeps increasing at the rate (1/service time) as it waits to be 

serviced. The response ratio of a short process increases more rapidly than that of a long process, so shorter 

processes are favored for scheduling. However, the response ratio of a long process eventually becomes large 

enough for the process to get scheduled. This feature provides an effect similar to the technique of aging, so 
long processes do not starve. 

 

Preemptive Scheduling Policies 

 

In preemptive scheduling, the server can be switched to the processing of a newrequest before completing the 
current request. The preempted request is put back into the list of pending requests (see Figure 7.1). Its servicing 
is resumed when it is scheduled again. Thus, a request might have to be scheduled many times before it 
completed. This feature causes a larger scheduling overhead than when nonpreemptive scheduling is used. 

 
The three preemptive scheduling policies are:  

 Round-robin scheduling with time-slicing (RR)  

TheRRpolicy provides comparable service to all CPU-bound processes. This feature is reflected in 

approximately equal values of their weighted turnarounds. The actual value of the weighted turnaround of a 

process depends on the number of processes in the system.Weighted turnarounds provided to processes that 

perform I/O operations would depend on the durations of their I/O operations. The RR policy does not fare well 

on measures of system performance like throughput because it does not give a favored treatment to short 

processes. 

 Least completed next (LCN) scheduling  

The LCN policy schedules the process that has so far consumed the least amount of CPU time. Thus, the nature 
of a process, whether CPU-bound or I/O-bound, and its CPU time requirement do not influence its progress in the 
system. Under the LCN policy, all processes will make approximately equal progress in terms of the CPU time 
consumed by them, so this policy guarantees that short processes will finish ahead of long processes. Ultimately, 
however, this policy has the familiar drawback of starving long processes of CPU attention. It also neglects 
existing processes if new processes keep arriving in the system. So even not-so-long processes tend to suffer 
starvation or large turnaround times. 

  
 Shortest time to go (STG) scheduling 

The shortest time to go policy schedules a process whose remaining CPU time requirements are the smallest in 
the system. It is a preemptive version of the shortest request next (SRN) policy. So it favours short processes 
over long ones and provides good throughput. Additionally, the STG policy also favours a process that is nearing 
completion over short processes entering the system. This feature helps to improve the turnaround times and 
weighted turnarounds of processes. Since it is analogous to the SRN policy, long processes might face starvation. 



  (b)  Explain briefly, scheduling in UNIX.   

UNIX is a pure time-sharing operating system. It uses a multilevel adaptive scheduling policy in which process 
priorities are varied to ensure good system performance and also to provide good user service. Processes are 
allocated numerical priorities, where a larger numerical value implies a lower effective priority. 

 

In Unix 4.3 BSD, the priorities are in the range 0 to 127. Processes in the user mode have priorities between 50 
and 127, while those in the kernel mode have priorities between 0 and 49.When a process is blocked in a system 
call, its priority is changed to a value in the range 0–49, depending on the cause of blocking. 
When it becomes active again, it executes the remainder of the system call with this priority. This arrangement 
ensures that the process would be scheduled as soon as possible, complete the task it was performing in the 
kernel mode and release kernel resources. When it exits the kernel mode, its priority reverts to its previous value, 
which was in the range 50–127. 

 
Unix uses the following formula to vary the priority of a process: 
 
 
 
 
 
 
It is implemented as follows: The scheduler maintains the CPU time used by a process in its process table entry. 
This field is initialized to 0. The real-time clock raises an interrupt 60 times a second, and the clock handler 
increments the count in the CPU usage field of the running process. The scheduler recomputes process priorities 
every second in a loop. For each process, it divides the value in the CPU usage field by 2, stores it back, and also 
uses it as the value of f. Recall that a large numerical value implies a lower effective priority, so the second factor 
in Eq. (7.5) lowers the priority of a process. The division by 2 ensures that the effect of CPU time used by a 

process decays; i.e., it wears off over a period of time, to avoid the problem of starvation faced in the least 
completed next (LCN) policy. 

 

A process can vary its own priority through the last factor in Eq. (7.5). The system call ―nice(<priority 
value>);‖ sets the nice value of a user process. It takes a zero or positive value as its argument. Thus, a process 
can only decrease its effective priority to be nice to other processes. It would typically do this when it enters a 
CPU-bound phase. 
 

Table : Operation of a Unix-like Scheduling Policy When Processes Perform I/O 

 

 

 

 

 

 

 



Fair Share Scheduling  
To ensure a fair share of CPU time to groups of processes, Unix schedulers add the term f (CPU time used by 
processes in the group) to Eq. (7.5). Thus, priorities of all processes in a group reduce when any of them 
consumes CPU time. This feature ensures that processes of a group would receive favored treatment if none of 
them has consumed much CPU time recently. The effect of the new factor also decays over time. 

Example 7.14  
Table 7.6 depicts fair share scheduling of the processes of Table 7.2. Fields P, T, and G contain process priority, 
CPU time consumed by a process, and CPU time consumed by a group of processes, respectively. Two process 
groups exist. 

 

The first group contains processes P1, P2, P4, and P5, while the second group contains process P3 all by itself. 
At 2 seconds, process P2 has just arrived. Its effective priority is low because process P1, which is in the same 
group, has executed for 2 seconds. However, P3 does not have a low priority when it arrives because the CPU 
time already consumed by its group is 0. As expected, process P3 receives a favored treatment compared to 
other processes. In fact, it receives every alternate time slice. Processes P2, P4, and P5 suffer because they 
belong to the same process group. These facts are reflected in the turnaround times and weighted turnarounds of 
the processes, which are as follows: 

 

 

 

Mean turnaround time (ta) = 9.2 seconds 
Mean weighted turnaround ( ) = 3.15 
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