
CMR
INSTITUTE OF
TECHNOLOGY

Internal Assessment Test 2– May 2017

Sub: Network Security Code: 10EC832
Date: 10 / 05 /17 Duration: 90 mins Max Marks: 50 Sem: 8 Branch: ECE/TCE

1 Explain the Feistel Cipher Encryption & Decryption in detail.

 The above figure depicts the structure proposed by Feistel. The

inputs to the encryption algorithm are a plaintext block of length

2w bits and a key K. The plaintext block is divided into two

halves, L0 and R0. The two halves of the data pass through n

rounds of processing and then combine to produce the ciphertext

block. Each round i has as inputs Li-1 and Ri-1, derived from the

previous round, as well as a subkey Ki, derived from the overall K.

In general, the subkeys Ki are different from K and from each

other. All rounds have the same structure. A substitution is

performed on the left half of the data. This is done by applying a

round function F to the right half of the data and then taking

the exclusive-OR of the output of that function and the left half of

the data. The round function has the same general structure for

each round but is parameterized by the round subkey Ki.

Following this substitution, a permutation is performed that

consists of the interchange of the two halves of the data.

The important features are as follows:

Block size: Larger block sizes mean greater security (all other

things being equal) but reduced encryption/decryption speed for

a given algorithm. The greater security is achieved by greater

diffusion Traditionally, a block size of 64 bits has been

considered a reasonable tradeoff and was nearly universal in

block cipher design. However, the new AES uses a 128-bit block

size.

 Key size: Larger key size means greater security but may decrease

encryption/decryption speed. The greater security is achieved by

greater resistance to brute-force attacks and greater confusion.

Key sizes of 64 bits or less are now widely considered to be

inadequate, and 128 bits has become a common size.

Number of rounds: The essence of the Feistel cipher is that a single

round offers inadequate security but that multiple rounds offer

increasing security. A typical size is 16 rounds.

Subkey generation algorithm: Greater complexity in this

algorithm should lead to greater difficulty of cryptanalysis.

Round function: Again, greater complexity generally means

greater resistance to cryptanalysis.

The two other considerations in the design of a Feistel cipher:

Fast software encryption/decryption: In many cases, encryption is

embedded in applications or utility functions in such a way as to

preclude a hardware implementation. Accordingly, the speed of

execution of the algorithm becomes a concern.

Ease of analysis: Although we would like to make our algorithm

as difficult as possible to cryptanalyze, there is great benefit in

making the algorithm easy to analyze. That is, if the algorithm

can be concisely and clearly explained, it is easier to analyze

that algorithm for cryptanalytic vulnerabilities and therefore

develop a higher level of assurance as to its strength. DES, for

example, does not have an easily analyzed functionality.

The process of decryption with a Feistel cipher is essentially the

same as the encryption process. The rule is as follows: Use the

ciphertext as input to the algorithm, but use the subkeys Ki in

reverse order. That is, use Kn in the first round, Kn–1 in the

second round, and so on until K1 is used in the last round. This is

a nice feature because it means we need not implement two

different algorithms, one for encryption and one for decryption.

2 Explain the modes of operations of block cipher.

 Five modes of operation

 1. Electronic Codebook Book (ECB)

 Message is broken into independent blocks which are

encrypted

 Each block is a value which is substituted, like a codebook,

hence name

 Each block is encoded independently of the other blocks

 C
i

 = E
K

(P
i

)

 Uses: secure transmission of single values

 2. Cipher Block Chaining (CBC)

 Solve security deficiencies in ECB

 Repeated same plaintext block result different

ciphertext block

 Each previous cipher blocks is chained to be input with

current plaintext block, hence name

 Use Initial Vector (IV) to start process

 C
i

 = E
K

(P
i

 XOR C
i-1

)

 C
0

= IV

Uses: bulk data encryption, authentication

 3. Cipher FeedBack (CFB)

 Use Initial Vector to start process

 Encrypt previous ciphertext , then combined with the

plaintext block using X-OR to produce the current ciphertext

 Cipher is fed back (hence name) to concatenate with the rest

of IV

 Plaintext is treated as a stream of bits

 Any number of bit (1, 8 or 64 or whatever) to be feed

back (denoted CFB-1, CFB-8, CFB-64)

 Relation between plaintext and ciphertext

 C
i

 = P
i

 XOR SelectLeft(E
K

(ShiftLeft(C
i-1

)))

 C
0

 = IV

Uses: stream data encryption, authentication

 4. Output FeedBack (OFB)

 Very similar to CFB

 But output of the encryption function output of cipher is fed

back (hence name), instead of ciphertext

 Feedback is independent of message

 Relation between plaintext and ciphertext

 C
i

 = P
i

 XOR O
i

 O
i

 = E
K

(O
i-1

)

 O
0

 = IV

Uses: stream encryption over noisy channels

 5. Counter (CTR)

 Encrypts counter value with the key rather than any

feedback value (no feedback)

 Counter for each plaintext will be different

 can be any function which produces a sequence which

is guaranteed not to repeat for a long time

 Relation

 C
i

 = P
i

 XOR O
i

 O
i

 = E
K

(i)

 Uses: high-speed network encryptions

3 In the RSA algorithm system, the cipher text received is C = 10 with a public key PU = {5,
35}, deduce the plain text. Verify the answer by encryption process.

 Given {e, n} = {5, 35}, C = 10

To calculate

Step

1

W. k. t.

The factors can be one of the choices.

Step

2

Step

3

Verifying if

Step

4

W. k. t.

Since given

To calculate we have to calculate
. Using extended Euclidean

algorithm

Where

 r
4 24 5 4 0 1 -4
1 5 4 1 1 -4 5
4 4 1 0 -4 5 -24
 1 0 5 -24

 d=

 Verifying

Step

5

Deciphering

Step

6

Verification

4 Explain the Diffie –Hellman key exchange algorithm. Also calculate the YA, YB and secret
key (KS) for q= 23, α = 7, XA = 3 and XB = 6.

 Given

User A computes his public key

User B computes his public key

Both users exchanges their public keys

So A is aware of

 B is aware of

A computes session key using

B computes session key using

Therefore the shared session key is

5 Explain the architecture of a distributed intrusion detection system. Give the major
issues in the design.

 Distributed Intrusion Detection

 Traditional focus is on single systems

 But typically have networked systems

 More effective defense has these working together to detect

intrusions issues

 dealing with varying audit record formats

 integrity & confidentiality of networked data

 centralized or decentralized architecture

Architecture diagram

Distributed Intrusion Detection – Agent Implementation

6 Explain the password selection strategies.

 Password Selection Strategies: The goal is to eliminate guessable

passwords while allowing the user to select a password that is

memorable. Four basic techniques are in use:

 User education.

 Computer-generated passwords.

 Reactive password checking.

 Proactive password checking.

 User education

 Users can be told the importance of using hard-to-

guess passwords and can be provided with guidelines

for selecting strong passwords.

 Computer-generated passwords

 passwords are quite random in nature

 Reactive password checking

 the system periodically runs its own password cracker

to find guessable passwords. The system cancels any

passwords that are guessed

 Proactive password checking

 user is allowed to select his or her own password.

However, at the time of selection, the system checks to

see if the password is allowable and, if not, rejects it.

 The trick with a proactive password checker is to strike

a balance between user acceptability and strength.

7 Explain in brief the taxonomy of malicious programs.

 Taxonomy diagram

 1. Trapdoors

 secret entry point into a program

 allows those who know access bypassing usual security

procedures

 have been commonly used by developers

 a threat when left in production programs allowing

exploited by attackers

 very hard to block in O/S

 requires good s/w development & update

 2. Logic Bomb

 one of oldest types of malicious software

 code embedded in legitimate program

 activated when specified conditions met

 eg presence/absence of some file

 particular date/time

 particular user

 when triggered typically damage system

 modify/delete files/disks

 3. Trojan Horse

 program with hidden side-effects

 which is usually superficially attractive

 eg game, s/w upgrade etc

 when run performs some additional tasks

 allows attacker to indirectly gain access they do not

have directly

 often used to propagate a virus/worm or install a backdoor

 or simply to destroy data

 4. Zombie

 program which secretly takes over another networked

computer

 then uses it to indirectly launch attacks

 often used to launch distributed denial of service (DDoS)

attacks

 exploits known flaws in network systems

 5. Viruses

 a piece of self-replicating code attached to some other code

 cf biological virus

 both propagates itself & carries a payload

 carries code to make copies of itself

 as well as code to perform some covert task

 6. Worms

 replicating but not infecting program

 typically spreads over a network

 cf Morris Internet Worm in 1988

 led to creation of CERTs

 using users distributed privileges or by exploiting system

vulnerabilities

 widely used by hackers to create zombie PC's, subsequently

used for further attacks, esp DoS

 major issue is lack of security of permanently connected

systems, esp PC's

8. List and explain various virus counter measures.

 The ideal solution to the threat of viruses is prevention: Do not

allow a virus to get into the system in the first place. This goal is,

in general, impossible to achieve, although prevention can

reduce the number of successful viral attacks. The next best

approach is to be able to do the following:

Detection: Once the infection has occurred, determine that it has

occurred and locate the virus.

Identification: Once detection has been achieved, identify the

specific virus that has infected a program.

Removal: Once the specific virus has been identified, remove all

traces of the virus from the infected program and restore it to its

original state. Remove the virus from all infected systems so that

the disease cannot spread further. If detection succeeds but either

identification or removal is not possible, then the alternative is to

discard the infected program and reload a clean backup version.

Advances in virus and antivirus technology go hand in hand.

Early viruses were relatively simple code fragments and could be

identified and purged with relatively simple antivirus software

packages. As the virus arms race has evolved, both viruses and,

necessarily, antivirus software have grown more complex and

sophisticated.

Digital Immune System

The digital immune system is a comprehensive approach to virus

protection developed by IBM [KEPH97a, KEPH97b]. The motivation

for this development has been the rising threat of Internet-based

virus propagation. We first say a few words about this threat and

then summarize IBM's approach. Traditionally, the virus threat

was characterized by the relatively slow spread of new viruses and

new mutations. Antivirus software was typically updated on a

monthly basis, and this has been sufficient to control the problem.

Also traditionally, the Internet played a comparatively small role

in the spread of viruses. But as [CHES97] points out, two major

trends in Internet technology have had an increasing

impact on the rate of virus propagation in recent years:

Integrated mail systems: Systems such as Lotus Notes and Microsoft

Outlook make it very simple to send anything to anyone and to

work with objects that are received.

Mobile-program systems: Capabilities such as Java and ActiveX

allow programs to move on their own from one system to another.

In response to the threat posed by these Internet-based

capabilities, IBM has developed a prototype digital immune

system. This system expands on the use of program emulation

discussed in the preceding subsection and provides a general-

purpose emulation and virus-detection system. The objective of

this system is to provide rapid response time so that viruses can be

stamped out almost as soon as they are introduced. When a new

virus enters an organization, the immune system automatically

captures it, analyzes it, adds detection and shielding for it,

removes it, and passes information about that virus to systems

running IBM AntiVirus so that it can be detected before it is

allowed to run elsewhere. Figure below illustrates the typical steps

in digital immune system operation:

1. A monitoring program on each PC uses a variety of heuristics

based on system behavior, suspicious changes to programs, or

family signature to infer that a virus may be present. The

monitoring program forwards a copy of any program thought to

be infected to an administrative machine within the

organization.

2. The administrative machine encrypts the sample and sends it

to a central virus analysis machine.

3. This machine creates an environment in which the infected

program can be safely run for analysis. Techniques used for this

purpose include emulation, or the creation of a protected

environment within which the suspect program can be executed

and monitored. The virus analysis machine then produces a

prescription for identifying and removing the virus.

4. The resulting prescription is sent back to the administrative

machine.

5. The administrative machine forwards the prescription to the

infected client.

6. The prescription is also forwarded to other clients in the

organization.

7. Subscribers around the world receive regular antivirus updates

that protect them from the new

virus.

Behavior-Blocking Software

Unlike heuristics or fingerprint-based scanners, behavior-

blocking software integrates with the operating

system of a host computer and monitors program behavior in

real-time for malicious actions. The behavior blocking software

then blocks potentially malicious actions before they have a

chance to affect the system. Monitored behaviors can include the

following: Attempts to open, view, delete, and/or modify files;

Attempts to format disk drives and other unrecoverable disk

operations; Modifications to the logic of executable files or

macros; Modification of critical system settings, such as start-up

settings;

Scripting of e-mail and instant messaging clients to send

executable content; and Initiation of network communications.

If the behavior blocker detects that a program is initiating

would-be malicious behaviors as it runs, it can block these

behaviors in real-time and/or terminate the offending software.

This gives it a fundamental advantage over such established

antivirus detection techniques as fingerprinting or heuristics.

While there are literally trillions of different ways to obfuscate

and rearrange the instructions of a virus or worm, many of which

will evade detection by a fingerprint scanner or heuristic,

eventually malicious code must make a well-defined request to

the operating system. Given that the behavior blocker can

intercept all such requests, it can identify and block malicious

actions regardless of how obfuscated the program logic appears to

be.

