
Page 1 of 2

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - II

Sub: Client Server Programming Code: 14SCN41

Date: 12/05/2017 Duration: 90 mins Max Marks: 50 Sem: IV Branch: Mtech(CNE)

Answer Any FIVE FULL Questions

Marks
OBE

CO RBT

1A What is the importance of procedure for Programming? How the procedure
library is designed for client programs.

[04] CO3 L2

B Explain the implementation details of ConnectTCP and ConnnectUDP. [06] CO3 L2

2. What are Daytime Service and Time Service? Explain the difference between
Daytime Service and Time Service.

[10] CO3 L2

3 What is Echo Service? Describe the problem of server deadlock. [10] CO3 L2

4 Write a program for procedure which forms the connection to the server. [10] CO3 L3

5 Write a client side program which accesses the Daytime Service. [10] CO3 L3

6 Describe algorithm for iterative Connection oriented server algorithm and
concurrent connectionless server algorithm.
.

[10] CO4 L1

7 How the performance of stateless server can be optimized? Explain briefly. [10] CO4 L1

Page 2 of 2

Course Outcomes

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

PO
9

PO
10

PO
11

PO
12

CO1:

Describe the Client Server Model,
Concurrency in Client Server
Software, Protocol Interface and
basic system calls in UNIX

0 0 0 0 0 0 0 0 0 0 0 0

CO2:
Explain the Berkeley Socket
interface, System calls for designing
the client Software

0 0 1 0 0 1 0 0 0 0 0 0

CO3:
Programming the client software for
Daytime, Time and Echo service

2 0 2 2 0 0 0 0 0 0 0 0

CO4:
Differentiate between different types
of connection and servers.

0 0 0 0 0 0 0 0 0 0 0 0

CO5:
Programming the server software for
Daytime, Time and Echo service

2 0 2 2 0 0 0 0 0 0 0 0

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,
experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,
conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;
PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-
Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;
PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore – 560 037
T:+9180 28524466 / 77

CMR INSTITUTE
OF TECHNOLOGY

Scheme and Solution – (IAT II)

Department of Computer Science and Engineering

Client Server Programming (14SCN41)

Q.1A. What is the importance of procedure for Programming? How the procedure library
is designed for client programs.

Importance of procedure for programming

 Most programmers understand the advantage of dividing large, complex programs into a
set of procedures: a modular program becomes easier to understand, debug, and modify
than an equivalent monolithic program.

 If programmers design procedures carefully, they can reuse them in other programs.
Finally, choosing procedures carefully can also make a program easier to port to new
computer systems.

 Conceptually, procedures raise the level of the language that programmers use by hiding
details.

 Using procedures helps avoid repetition by providing higher-level operations. Once a
particular algorithm has been encoded in a procedure, the programmer can use it in many
programs without having to consider the implementation details again.

 A careful use of procedures is especially important when building client and server
programs. First, because network software includes declarations for items like endpoint
addresses, building programs that use network services involves a myriad of tedious
details not found in conventional programs. Using procedures to hide those details
reduces the chance for error. Second, much of the code needed to allocate a socket, bind
addresses, and form a network connection is repeated in each client; placing it in
procedures allows programmers to reuse the code instead of replicating it. Third, because
TCP/IP was designed to interconnect heterogeneous machines, network applications
often operate on many different machine architectures. Programmers can use procedures
to isolate operating system dependencies, making it easier to port code to a new machine.

An Example Procedure Library for Client Programs

The first step of designing a procedure library is abstraction: a programmer must imagine high-
level operations that would make writing programs simpler. For example, an application
programmer might imagine two procedures that handle the work of allocating and connecting a
socket:

socket = connectTCP(machine, service);

and

socket = connectUDP(machine, service);

Q.1.B. Explain the implementation details of ConnectTCP and ConnnectUDP.

Implementation of ConnectTCP

Implementation of ConnectUDP

Q.2 What are Daytime Service and Time Service? Explain the difference between Daytime
Service and Time Service

Daytime Service

 The TCP/IP standards define an application protocol that allows a user to obtain the date
and time of day in a format fit for human consumption. The service is officially named
the DAYTIME service.

 To access the DAYTIME service, the user invokes a client application. The client
contacts a server to obtain the information, and then prints it.

For example,

DAYTIME could supply a date in the form:

weekday, month day, year time-timezone

like

Thursday, February 22, 1996 17:37:43-PST

 The standard specifies that DAYTIME is available for both TCP and UDP. In both cases,
it operates at protocol port 13.

 The TCP version of DAYTIME uses the presence of a TCP connection to trigger output:
as soon as a new connection arrives, the server forms a text string that contains the
current date and time, sends the string, and then closes the connection. Thus, the client
need not send any request at all. In fact, the standard specifies that the server must discard
any data sent by the client.

 The UDP version of DAYTIME requires the client to send a request. A request consists
of an arbitrary UDP datagram. Whenever a server receives a datagram, it formats the
current date and time, places the resulting string in an outgoing datagram, and sends it
back to the client. Once it has sent a reply, the server discards the datagram that triggered
the response.

Time Service

 TCP/IP defines a service that allows one machine to obtain the current date and time of
day from another. Officially named TIME, the service is quite simple: a client program
executing on one machine sends a request to a server executing on another.

 Whenever the server receives a request, it obtains the current date and time of day from
the local operating system, encodes the information in a standard format, and sends it
back to the client in a response.

 To avoid the problems that occur if the client and server reside in different time zones,
the TIME protocol specifies that all time and date information must be represented in
Universal Coordinated Time3, abbreviated UCT or UT.

 Thus, a server converts from its local time to universal time before sending a reply, and a
client converts from universal time to its local time when the reply arrives.

 Unlike the DAYTIME service, which is intended for human users, the TIME service is
intended for use by programs that store or manipulate times. The TIME protocol always
specifies time in a 32-bit integer, representing the number of seconds since an epoch date.
The TIME protocol uses midnight, January l, 1900, as its epoch.

 Using an integer representation allows computers to transfer time from one machine to
another quickly, without waiting to convert it into a text string and back into an integer.
Thus, the TIME service makes it possible for one computer to set its timeofday clock
from the clock on another system.

Q.3 What is Echo Service? Describe the problem of server deadlock.

Echo Service

 TCP/IP standards specify an ECHO service for both UDP and TCP protocols.
 ECHO server merely returns all the data it receives from a client. Despite their simplicity,

ECHO services are important tools that network managers use to test reachability, debug
protocol software, and identify routing problems.

 The TCP ECHO service specifies that a server must accept incoming connection
requests, read data from the connection, and write the data back over the connection until
the client terminates the transfer. Meanwhile, the client sends input and then reads it
back.

Server Deadlock

 To understand how deadlock can happen, consider an iterative, connection-oriented
server. Suppose some client application, C, misbehaves. In the simplest case, assume C
makes a connection to a server, but never sends a request. The server will accept the new
connection, and call read to extract the next request. The server process blocks in the call
to read waiting for a request that will never arrive.

 Server deadlock can arise in a much more subtle way if clients misbehave by not
consuming responses. For example, assume that a client C makes a connection to a server
sends it a sequence of requests, but never reads the responses. The server keeps accepting
requests, generating responses, and sending them back to the client.

 At the server, TCP protocol software transmits the first few bytes over the connection to
the client. Eventually, TCP will fill the client's receive window and will stop transmitting
data. If the server application program continues to generate responses, the local buffer
TCP uses to store outgoing data for the connection will become full and the server
process will block.

 Deadlock arises because processes block when the operating system cannot satisfy a
system call. In particular, a call to write will block the calling process if TCP has no local
buffer space for the data being sent; a call to read will block the calling process until TCP
receives data.

 For concurrent servers, only the single slave process associated with a particular client
blocks if the client fails to send requests or read responses. For a single-process
implementation, however, the central server process will block. If the central server
process blocks, it cannot handle other connections. The important point is that any server
using only one process can be subject to deadlock.

Q.4 Write a program for procedure which forms the connection to the server.

Q.5 Write a client side program which accesses the Daytime Service.

Q.6 Describe algorithm for iterative Connection oriented server algorithm and concurrent
connectionless server algorithm.

An Iterative, Connection-Oriented Server Algorithm

A Concurrent, Connectionless Server Algorithm

Q.7 How the performance of stateless server can be optimized? Explain briefly.

 Consider a connectionless server that allows clients to read information from files stored
on the server's computer. To keep the protocol stateless, the designer requires each client
request to specify a file name, a position in the file, and the number of bytes to read. The
most straightforward server implementation handles each request independently: it opens
the specified file, seeks to the specified position, reads the specified number of bytes,
sends the information back to the client, and then closes the file.

 To optimize server performance, the programmer decides to maintain a small table of file
information as Figure shows below

 The programmer uses the client's IP address and protocol port number as an index into
the table, and arranges for each table entry to contain a pointer to a large buffer of data
from the file being read. When a client issues its first request, the server searches the
table and finds that it has no record of the client. It allocates a large buffer to hold data
from the file, allocates a new table entry to point to the buffer, opens the specified file,
and reads data into the buffer.

 It then copies information out of the buffer when forming a reply. The next time a
request arrives from the same client, the server finds the matching entry in the table,
follows the pointer to the buffer, and extracts data from it without opening the file.

 Once the client has read the entire file, the server deallocates the buffer and the table
entry, making the resources available for use by another client.

 The server also compares the file specified in a request with the file name in the table
entry to verify that the client is still using the same file as the previous request.

 Adding the proposed table changes the server in a subtle way, however, because it
introduces state information. Of course, state information chosen carelessly could
introduce errors in the way the server responds. For example, if the server used the
client's IP address and protocol port number to find the buffer without checking the file
name or file offset in the request, duplicate or out-of-order requests could cause the
server to return incorrect data.

 Unfortunately, even a small amount of state information can cause a server to perform
badly when machines, client programs, or networks fail. To understand why, consider
what happens if one of the client programs fails (i.e., crashes) and must be restarted.

 Chances are high that the client will ask for an arbitrary protocol port number and UDP
will assign a new protocol port number different from the one assigned for earlier
requests. When the server receives a request from the client, it cannot know that the client
has crashed and restarted, so it allocates a new buffer for the file and a new slot in the
table. Consequently, it cannot know that the old table entry the client was using should be
removed. If the server does not remove old entries, it will eventually run out of table
slots.

	CSP_IAT2_QP - RESHMA PRAKASH.pdf
	IAT2_SCHEME AND SOLUTION - RESHMA PRAKASH.pdf

