
Page 1 of 2

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - II

Sub: Agile Technologies Code: 14SCS423

Date: 13/05/2017 Duration: 90 mins Max Marks: 50 Sem: IV Branch: Mtech(CSE)

Answer Any FIVE FULL Questions

Marks
OBE

CO RBT

1 Describe four different team strategies for generating trust among the team
members.

[10] CO4 L1

2. Write short notes on
a. Outsourced Custom Development
b. Vertical-Market Softwarec. Horizontal-Market Software

[10] CO4 L2

3 What is production ready software? Also explain how to achieve Done Done. [10] CO4 L3

4 Describe any three ingredients for achieving nearly zero bugs. [10] CO4 L2

5 Describe ten minute build briefly. [10] CO4 L2

6 How can you manage project specific risks? Explain briefly.
.

[10] CO4 L3

7 Explain any two techniques to improve the process followed in the organization [10] CO3 L3

Page 2 of 2

Course Outcomes

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

PO
9

PO
10

PO
11

PO
12

CO1:
Describe the agile software
development methodology. 0 0 0 0 0 0 0 0 0 0 2 0

CO2:
Describe the XP Lifecycle, XP
Concepts, Adopting XP 0 0 0 0 0 0 0 1 0 0 1 0

CO3:
Explain the different aspects of
Mastering agility. 0 0 0 0 0 1 0 1 0 0 0 0

CO4:

Apply the various practices of
Thinking, Collaborating, Releasing,
Planning and Development in
organization.

2 0 0 0 3 3 0 2 0 0 0 0

Cognitive level KEYWORDS

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,
experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,
conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;
PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-
Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;
PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore – 560 037
T:+9180 28524466 / 77

CMR INSTITUTE
OF TECHNOLOGY

Scheme and Solution – (IAT 2)

Department of Computer Science and Engineering

Agile Technologies (14SCS423)
Scheme

Q.1 Explanation on Customer-Programmer Empathy(3 marks)

Explanation on Programmer-Tester Empathy (3 marks)

Explanation on Eat together (2 marks)

Explanation on Team Continuity (2 marks)

Q.2Explanation on Outsourced Custom Development(4 marks)

Explanation on Vertical-Market Software (3 marks)

Explanation on Horizontal-Market Software (3 marks)

Q.3Explain production ready software(4 marks)

Explain how to achieve done done (6 marks)

Q.4Explanation on any three ingredients for achieving nearly zero bugs (10 marks).

Q.5Explanation on Automating Build(2 marks)

Explanation on how to automate (2 marks)

Explanation on when to automate (2 marks)

Explanation on Automating Legacy Projects (2 marks)

Explanation on Ten minutes or less (2 marks)

Q.6 Detail explanation on managing project risk(10 marks)

Q.7 Explanation on any two techniques for improving the process where each technique

carries 5 marks.

Solution

1. Describe four different team strategies for generating trust among the team
members.

The team must take joint responsibility for their work. Team members need to think of the
rest of the team as “us,” not “them.”Trust is essential for the team to perform this well. You
need to trust that taking time to help others won’t make you look unproductive. You need to
trust that you’ll be treated with respect when you ask for help or disagree with someone. The
organization needs to trust the team, too.

Team Strategy #1: Customer-Programmer Empathy

 Customers often feel that programmers don’t care enough about their needs and
deadlines, some of which, if missed, could cost them their jobs. Programmers often
feel forced into commitments they can’t meet, hurting their health and relationships.

 Sometimes the acrimony is so intense that the groups actually start doing what the
others fear: programmers react by inflating estimates and focusing on technical toys
at the expense of necessary features; customers react by ignoring programmer
estimates and applying schedule pressure. This sometimes happens even when there’s
no overt face-to-face hostility.

 Sitting together is the most effective way to build empathy. Each group gets to see
that the others are working just as hard. Retrospectives also help, if your team can
avoid placing blame. Programmers can help by being respectful of customer goals,
and customers can help by being respectful of programmer estimates and technical
recommendations. All of this is easier with energized work.

Team Strategy #2: Programmer-Tester Empathy

 There is “us versus them” attitudes between programmers and testers, although it isn’t
quite as prevalent as customer-programmer discord.

 When it occurs, programmers tend not to show respect for the testers’ abilities, and
testers see their mission as shooting down the programmers’ work.

 Programmers, remember that testing takes skill and careful work, just as
programming does.

 Take advantage of testers’ abilities to find mistakes you would never consider, and
thank them for helping prevent embarrassing problems from reaching stakeholders
and users.

 Testers, focus on the team’s joint goal: releasing a great product.

Team Strategy #3: Eat Together

 Another good way to improve team cohesiveness isto eat together. Something about
sharing meals breaks down barriers and fosters team cohesiveness. Try providing a
free meal once per week.

 If you have the meal brought into the office, set a table and serve the food family-
style to prevent people from taking the food back to their desks.

Team Strategy #4: Team Continuity

 After a project ends, the team typically breaks up. All the wonderful trust and
cohesivenessthat the team has formed is lost. The next project starts with a brand-new
team, and they haveto struggle through the four phases of team formation all over again.

 You can avoid this waste by keeping productive teams together. Most organizations think
ofpeople as the basic “resource” in the company. Instead, think of the team as the
resource.

 Rather than assigning people to projects, assign a team to a project. Have people join
teamsand stick together for multiple projects.

 Some teams will be more effective than others. Take advantage of this by using the
mosteffective teams as a training ground for other teams.

2. Write short notes on
a. Outsourced Custom Development
b. Vertical-Market Software
c. Horizontal-Market Software

Outsourced Custom Development

 Outsourced custom development is similar to in-house development, but you may
not have the connections that an in-house team does. As a result, you may not be
able to recruit realcustomers to act as the team’s on-site customers.

 One way to recruit real customers is to move your team to your customer’soffices
rather than asking them to join you at yours.

 If you can’t bring real customers onto the team, make an extra effort to
involvethem. Meet in person with your real customers for the first week or two
ofthe project so you can discuss the project vision and initial release plan.

 Ifyou’re located near each other, meet again for each iteration demo retrospective,
and planning session.If you’re far enough apart that regular visits aren’t feasible,
stay in touch via instant messagingand phone conferences.

Vertical Market Software

 Vertical-market software is developed for many organizations.Like custom
development, however, it’s built for a particular industry and it’s often
customizedfor each customer.

 Because vertical-market software has multiplecustomers, each with customized
needs, you haveto be careful about giving real customers too muchcontrol over

the direction of the product. You couldend up making a product that, while fitting
your onsitecustomer’s needs perfectly, alienates yourremaining customers.

 Instead, your organization should appoint a product manager who understands the
needs of your real customers impeccably.

 Rather than involving real customers as members of the team, createopportunities
to solicit their feedback. Some companies create a customer review board
filledwith their most important customers. They share their release plans with
these customers and—on a rotating basis—provide installable iteration demo
releases for customers to try.

Horizontal-Market Software

 Horizontal-market software is the visible tip of the software development iceberg:
softwarethat’s intended to be used across a wide range of industries.

 As with vertical-market software, it’s probably better to set limits on the control
that realcustomers have over the direction of horizontal-market software.
Horizontal-market softwareneeds to appeal to a wide audience, and real customers
aren’t likely to have that perspective.

 Again, an in-house product manager who creates a compelling vision based on all
customers’needs is a better choice.

 As a horizontal-market developer, your organization may not have the close ties
withcustomers that vertical-market developers do. Thus, a customer review board
may not be agood option for you. Instead, find other ways to involve customers:
focus groups, userexperience testing, community previews, beta releases, and so
forth.

3. What is production ready software? Also explain how to achieve Done Done.

 Done-Done means the story or feature should be completely finished with
integration, testing and ready to be deployed at the end of iteration.

 Partially finished stories result in hidden costs and destabilizes the release
planning.

Story or feature is done-done only when it satisfies this criteria

 Tested (all unit, integration, and customer tests finished)

 Coded (all code written)
 Designed (code refactored to the team’s satisfaction)
 Integrated (the story works from end to end—typically, UI to database—and fits

into therest of the software)
 Builds (the build script includes any new modules)

 Installs (the build script includes the story in the automated installer)
 Migrates (the build script updates database schema if necessary; the installer

migrates datawhen appropriate)
 Reviewed (customers have reviewed the story and confirmed that it meets

theirexpectations)

 Fixed (all known bugs have been fixed or scheduled as their own stories)
 Accepted (customers agree that the story is finished)

How to be Done-Done

 Make a little progress on every aspect of your work every day.

 Use TDD.

 Integrate the code with rest of the system(CI)

 Use ten minute build and have a separate team for updating the installer.

 Include the onsite customers and show them the look of UI and get feedback.

 Integrate various pieces and run the software to make sure the pieces all work
together.

 Conduct exploratory testing.

 Fix the mistakes, bugs and errors.

 Improve work habits.

 When you believe the story is “done done,” show it to your customers for final
acceptance review.

4. Describe any three ingredients for achieving nearly zero bugs.

Ingredient # 1: Write fewer bugs

 Start with TDD- to reduce the number of defects.

 Work sensible hours(i.e. energized work)

 Use pair programming- Program all production code in pairs. This improves your
brainpower which helps you make less mistakes and find them quickly.

 Allow onsite customers to sit together in your team.

 Use customer tests to help communicate complicated domain rules.

 Testers work with customer to find and fix gaps in their approach to requirements.

 Demonstrate software to stakeholders every week and act on their feedback.

 Good coding standards, done-done checklist will help to avoid common mistakes.

Ingredient # 2: Eliminate bug breeding ground

 Technical debt-breeds bugs.Hence pay down your technical debt to generate few
defects or bugs

 Hence to avoid or eliminate the bug breeding groundsPay down the technical debt of old
code in iteration slack.

 Create clean code by following simple design.Both code and design should be refactored.

Ingredient # 3: Fix bugs now

 Fix bugs quickly- To reduce hidden cost, future problems, defects in future.

 After fixing the bug identifyWhy did that bug occur?Is there a design flaw that made this
bug possible?Is there some way to refactor the code that would make this kind of bug less
likely?If you identify systemic problem-please discuss it in stand up meeting or
retrospective.

 Fixing bug requires all team members to sit together.

 Use collective code ownership so that any pair can fix a buggy module.

 Bug is too large

 Write it in story card.
 Identify tasks for this story card
 If there is enough slack fix the bug
 Else ask your product manager to decide whether to fix it in this release or next

iteration.

5. Describe ten minute build briefly.

Automate Build

• Building the whole project is often a frustrating and lengthy experience. This frustration
can spill over to the rest of your work.

• Hence automating your build is one of the easiest ways to improve morale and increase
productivity.

How to automate

 Using build tools

 Java-Ant Tool

 .Net- Nant and MSBuild

 C and C++- Make

 The build tool should be able to do following without human intervention.

 Compile code and run tests

 configure registry settings

 initialize database schemas

 Set up web servers.

 ability to create a production release

 Local Build:You should be able to build even when disconnected from the network. A
local build will allow you to build and test at any time without worrying about other
people’s activities.

 Instead of using the generic script generated by IDE create completely new script.

When to automate

 At the start of first iteration

 First iteration: involves delivering the working model of simple product.

 Because the product is so small and simple at this stage, creating a high-quality
automated build is easy.

 In every iteration, as you add features that require more out of your build, improve your
build script.

 Use the build script to configure the integration machine. Don’t configure it manually.

Automating Legacy Projects

 Creating automated build script for existing project requires some time , but surely it
improves your life.

 Existing project has many components. Choose the most error-prone or frustrating
component for creating the automated build first.

 First the build script should be able to compile the component.

 Next, add the ability to run unit tests and make sure they pass.

 Next, add the ability to handle some configuration settings automatically.

 Next, add the ability to either create a release package such as an installer or deploying
directly to the production servers

Ten minutes or less

 Build is two-step process

 On local machine

 On integration machine

 A 10-minute build leads to a 20-minute integration cycle. That’s a pretty long delay.

 The easiest way to keep the build under 5 minutes (with a 10-minute maximum) is to
keep the build times down from the beginning.

 Slow tests are the most common cause of slow builds.

 You should be able to run about 100 unit tests per second. Unit tests should comprise the
majority of your tests. A fraction (less than 10 percent) should be integration tests, which
checks that two components synchronize properly.

 if compilation speed becomes a problem, consider optimizing code layout or using a
compilation cache or incremental.

 You could also use a distributed compilation system or take the best machine available
for use as the build master.

6. How can you manage project specific risks? Explain briefly.

 Create a risk census—that is, a list of the risks your project faces that focuses on your
project’s unique risks. Gather the whole team and hand out index cards. Remind team
members that during this exercise, negative thinking is not only OK, it’s necessary. Ask

them to consider ways in which the project could fail. Write several questions on the
board.

 What about the project keeps you up at night?
 Imagine it’s a year after the project’s disastrous failure and you’re being

interviewed about what went wrong. What happened?
 Imagine your best dreams for the project, then write down the opposite.
 How could the project fail without anyone being at fault?
 How could the project fail if it were the stakeholders’ faults? The customers’

faults? Testers? Programmers? Management? Your fault? Etc.
 How could the project succeed but leave one specific stakeholder unsatisfied or

angry?
 Once you have your list of catastrophes, brainstorm scenarios that could lead to those

catastrophes. From those scenarios, imagine possible root causes. These root causes are
your risks: the causes of scenarios that will lead to catastrophic results.

 After you’ve finished brainstorming risks, let the rest of the team return to their iteration
while you consider the risks within a smaller group. (Include a cross-section of the team.)
For each risk, determine: Estimated probability—I prefer “high,” “medium,” and
“low.”Specific impact to project if it occurs—dollars lost, days delayed, and project
cancellation are common possibilities.

 For the risks you decide to handle, determine transition indicators, mitigation and
contingency activities, and your risk exposure:

 Transition indicators tell you when the risk will come true. It’s human nature to
downplay upcoming risks, so choose indicators that are objective rather than subjective.
For example, if your risk is “unexpected popularity causes extended downtime,” then
your transition indicator might be “server utilization trend shows upcoming utilization
over 80percent.

 Mitigation activities reduce the impact of the risk. Mitigation happens in advance,
regardless of whether the risk comes to pass. Create stories for them and add them to
your release plan. To continue the example, possible stories include “support horizontal
scalability” and “prepare load balancer.”

 Contingency activities also reduce the impact of the risk, but they are only necessary if
the risk occurs. They often depend on mitigation activities that you perform in advance.
For example, “purchase more bandwidth from ISP,” “install load balancer,” and
“purchase and prepare additional frontend servers.”

 Risk exposure reflects how much time or money you should set aside to contain the risk.
To calculate this, first estimate the numerical probability of the risk and then multiply
that by the impact. When considering your impact, remember that you will have already
paid for mitigation activities, but contingency activities are part of the impact. For
example, you might believe that downtime due to popularity is 35 percent likely, and the
impact is three days of additional programmer time and $20,000 for bandwidth,
collocation fees, and new equipment. Your total risk exposure is $7,000 and one day.

7. Explain any two techniques to improve the process followed in the organization.

Understand your project

• To improve the process understands how it affects your project.
• What works well and what doesn’t- Find it through the feedback.
• Always ask why

 Why do we follow this practice?
 Why is this practice working?
 Why isn’t this practice working?
 Encourage open discussion among team members.

In practice
• Feedback Loops: Helps to improve work
• Root-cause analysis, retrospectives: improve the team’s understanding.
• Stand-up meetings, informative workspace: contribute to an information-rich

environment.
• Energized work and slack: reduce work pressure.
• Pair programming: gives one person in each pair time to think about strategy.

Tune and adapt

• Whenever some change is needed modify the process.
• Changes require tuning. Tuning is adopted by doing small, isolated changes (i.e.

experiment).
• Observe the results according to your expectation. Iterate until you’re satisfied with the

results.
• Team should be flexible, adaptive and needs to have the courage to experiment and

occasionally fail.
• New agile teams lack experience and hence should be cautious about changing their

process.
• The feedback about your changes helps to improve your process and your understanding

of agility.

In practice
• Tuning and Adapting is achieved with the help of retrospective. Retrospective is an

explicit practice.
• But the Courage to Adapt any time is important principle and is based on XP’s value

Courage.

	AT_IAT2_QP - RESHMA PRAKASH.pdf
	IAT2_solution - RESHMA PRAKASH.pdf

