

Internal Assessment Test 2 – May 2017

Sub:	Advances In Computer Networks	Code:	16SC	CS22
Date:	12-05-2017 Duration: 90 mins Max Marks: 50 Sem: II	Branch:	M.Tec	h(CSE)
		Total marks: 50		
		Marks	O	BE
			CO	RBT
1.	Write short note on a) ARP b) DHCP.	[10]	CO2	L2
	OR			
2.	What is source routing? With an example, explain three ways to handle header for source routing.	[10]	CO2	L4
3.	Write short note on a) Email b) WWW	[10]	CO6	L2
٥.	OR	[10]		
4.	What is network management? Explain SNMP in detail.	[10]	CO6	L4
		_		
5.	For the network given, show how distance-vector routing algorithm works	[10]	CO3	L3

Fig 1

- i) Obtain the initial distance stored at each node.(Global view)
- ii) Initial routing table at node A.
- iii) Final routing table at node A.
- iv) Final distance stored at each node. (Global view).

OR

- 6. What is distance-vector routing algorithm and where is it used? Explain the [10] algorithm.
- 7. Explain DNS in detail.

OR

- 8. With neat diagram, explain the structure and representation of MIB object [10] names.
- 9. Explain the packet format for a type 1 OSPF link state advertisement. [10]

OR

10 Explain in detail the forward search algorithm.

[10]

[10]

CO3

CO6

CO6

CO3

CO3

L2

L2

L4

L4

L2

Scheme & Solution

<u>Internal Assessment Test 2 – May 2017</u>

	Advances In Computer Networks	Code:	16SC
12-0	05-2017 Duration: 90 mins Max Marks: 50 Sem: II	Branch:	M.Tech
Tota	al marks: 50		
1a)	Write short note on a) ARP b) DHCP.		
14)	ARP (Address Resolution Protocol)		
	■ Map IP addresses into physical addresses		
	■ Techniques		
	encode physical address in host part of IP address		
	■ table-based		
	■ ARP (Address Resolution Protocol)	2.5 Marks	
	table of IP to physical address bindings		
	 broadcast request if IP address not in table target machine responds with its physical address 		
	table entries are discarded if not refreshed		
	■ Explain ARP Packet Format		
	0 8 16 31 Hardware type = 1 ProtocolType = 0x0800		
	HLen=48 PLen=32 Operation		
	SourceHardwareAddr (bytes 0–3)		
	SourceHardwareAddr (bytes 4–5) SourceProtocolAddr (bytes 0–1)		
	SourceProtocolAddr (bytes 2–3) TargetHardwareAddr (bytes 0–1)		
	TargetHardwareAddr (bytes 2–5)		
	TargetProtocolAddr (bytes 0–3) 2.5 M	arks	
b)			
	DUCD (Decreed Heat Confirmation Decreed)		
	 DHCP (Dynamic Host Configuration Protocol) ■ Most host OS provide a way for system admin/user to manually 	configure	
	IP needed by a host, but it has some drawbacks. Thus, automated	-	
	methods are required. Primary method uses a protocol - DHCP	2 cominguitation	
	■ DHCP relies on DHCP server for providing configuration inform	ation to hosts	
	■ There is at least one DHCP server for an administrative domain	>	
	■ DHCP server maintains a pool of available addresses		
	■ Explain the server discovery with diagram Unicast to server	3 Ma	ırks
	DHCP Other networks		
	relay DHCP server)	
	Broadcast		
	■ Draw DHCP Packet format 2 Marks		
	2 Marks		
2.	What is source routing? With an example, explain three ways	to handle	
	header for source routing.	-	
	Source routing: All the information about network topology that is requi	red to switch a	
	packet across the network is provided by the source host. – 1 Mark		
	One way to implement source routing – Assign a number to each output	of each switch and	d to

place that number in the header of the packet. Explain the switching function with this. Draw diagram. -3 Marks

Explain three approaches to handle headers for source routing- Rotation, Stripping, Pointer with diagram –5 Marks

Source routing can be used in both datagram and VC networks. Give eg.

Source routes- strict / loose - 1 Mark

- 3. Write short note on a) Email b) WWW
 - a) Email
 - It is one of the most widely used and popular applications.
 - ➤ Mail delivery differs fundamentally from other uses of networks.
 - To handle delayed delivery mail systems use a technique called **spooling.** 2 Marks OUTGOING MAIL CLIENT

Explain the figure ----- 3 Marks b)WWW

- World Wide Web(WWW)
- The primary protocol used to transfer a Web page from a server to a Web browser.
- Web pages: the Web consists of a large set of documents that are accessible over the Internet.
- Each Web page is classified as a hypermedia document.
- * Suffix media: indicate that a document can contain items other than text.
- * Prefix hyper: a document can contain selectable links that refer to other, related documents.
 - Web browser consists of an application that a user invokes to access and display a Web page.
 - Web server obtain a copy of the specified page, response the client's request.
 - HyperText Markup Language(HTML)
- * Tags: give guidelines for display. Some tags come in pairs that apply to all items between the pair.
 - * For example: <center></center>
 - Uniform Resource Locator(URL)
 - * Each Web page is assigned a unique name(URL).
 - * A URL follows http scheme has the following form:

http:// hostname [:port] / path [; parameters] [? query]

■ HTTP?

The protocol used for communication between a browser and a Web server or between intermediate machines and Web servers.

4. What is network management? Explain SNMP in detail.

Network management – define (2 Marks)

In addition to protocols that provide network level services and application programs that use those services, a sub system is needed that allows a manager to configure a network, control routing, debug problems and identify situations in which computers violate policies. Such activities are referred as network management.

SNMP (8 Marks)

- Network management protocols specify communication between the network management client and a network management server program that executes at the host or the router
- The protocol needs to be flexible and compatible to changes.
- Does not define a large set of commands.
- Uses the *fetch and store* paradigm
- Taking a conceptual view of SNMP it contains only 2 commands
- Example if you want to reboot:

Declare a data item that gives the time until the next reboot and allows the manager to assign a value to the item like 0

- Looking at the managers point of view SNMP remains hidden
- SNMP software comes with a GUI interface that displays diagrams of network connectivity and uses the point and click interaction technique
- figure 30.6 in the book shows the fetch and store commands
- Get request fetch
- Set request store
- Response provides a reply.

5.

For the network given, show how distance-vector routing algorithm works for node A. (Refer Fig 1)

Fig 1

- i) Obtain the initial distance stored at each node.(Global view)
- ii) Initial routing table at node A.
- iii) Final routing table at node A.
- iv) Final distance stored at each node. (Global view).

	_							
Information	Distance to Reach Node							
Stored at Node	А	В	C	D	E	F	G	
A	0	-1	-1	00	- 31	1	00	
В	1	0	1	00	ಯ	00	00	
C	1	1	О	1	00	00	00	
D	~	000	1	0	00	00	1	
E	1	- 00	00	00	0	00	00	
F	1	00	~	00	90	0	1	
F-	7,2227	22.2	12202	- 1	100000	4		

3 Marks

ii)

Destination	Cost	NextHop
В	1	В
С	1	С
D	∞	-
E	1	E
F	1	F
G	∞	

2 Marks

iii)

Destination	Cost	NextHop
В	1	В
С	1	С
D	2	С
E	1	E
F	1	F
G	2	F

2 Marks

iv)

Information	Distance to Reach Node						
Stored at Node	Α	В	C	D	E	F	G
Α	0	1	1	2	1	1	2
В	1	0	1	2	2	2	3
С	1	1	0	1	2	2	2
D	2	2	1	0	3	2	1
E	1	2	2	3	0	2	3
E	1	2	2	2	2	0	1
G	2	3	2	1	3	1	0

3 Marks

- 6. What is distance-vector routing algorithm and where is it used? Explain the algorithm.
 - Each node constructs a one dimensional array (a vector) containing the "distances" (costs) to all other nodes and distributes that vector to its immediate neighbors
 - Starting assumption is that each node knows the cost of the link to each of its directly connected neighbors
 - Intra domain routing protocol

----- 3 Marks

Explain the process of building routing table by routers with tables. ———— **4 Marks** Explain the scenario when a node detects a link failure with count to infinity problem. List the solutions for count to infinity

------ 3 Marks

7. Explain DNS in detail.

DNS (Domain Name System) – provides name to address mapping for the Internet.

- -Has 2 conceptually independent aspects:1) name syntax and rules for delegating authority over names 2) Implementation of Distributed computing system
- -Uses a hierarchichal naming scheme- domain names-> sequence of sub names separated by a delimiter
- -Eg: cs.purdue.edu ->> explain
- -Top level domains: Include points on ICANN, Domain name registrar-----3

-Mapping domain names to addresses – Explain	4 Marks	
-Domain name resolution)	
top down		
two ways to use DNS	}	3 Marks
Recursive and Iterative resolution		

8. With neat diagram, explain the structure and representation of MIB object

structure and representation of MIB object names.

- Names for MIB variables are taken from the object identifier namespace administered by ISO & ITU.
- Object Identifier provides a namespace in which all possible objects can be designated. The namespace includes variables used in network management and names for arbitrary objects.
- Object Identifier namespace is absolute(global) and hierarchical
- The name of an object in the hierarchy is a sequence of numeric labels, separated with periods to identify an individual component, on the nodes along a path from the node to the object.
- Example: The name 1.3.6.1.2 denotes the node mgmt

"igure 30.4 Part of the hierarchical object identifier namespace used to name MIB variables. An object's name consists of the numeric labels along a path from the root to the object.

- MIB groups variables into categories.
- The categories are the subtrees of the MIB node of the object identifier namespace (Fig 2).
- Examples:
- Refer to Fig 2.

- Figure 30.5 Part of the object identifier namespace under the IAB mib node. Each subtree corresponds to one of the categories of MIB variables
- fig 2
- MIB standards do not dictate the implementation, instead provides a uniform and virtual interface to access data.
- 9. Explain the packet format for a type 1 OSPF link state advertisement.

packet format for a type 1 OSPF link state advertisement

• •								
1	LS	Age	Options	Type=1				
Link-state ID								
	Advertising router							
	LS sequence number							
	LS checksum Length							
0	Flags	0	Number of links					
	Link ID							
	Link data							
Link type Num_TOS Metric								
Optional TOS information								
More links								

- 6 Marks

Explain the fields - 4 Marks

10. Explain in detail the forward search algorithm.

forward search algorithm – 7 Marks

- Initialize the **Confirmed** list with an entry for myself; this entry has a cost of 0
- For the node just added to the **Confirmed** list in the previous step, call it node **Next**, select its LSP
- For each neighbor (Neighbor) of **Next**, calculate the cost (Cost) to reach this Neighbor as the sum of the cost from myself to Next and from Next to Neighbor
 - If Neighbor is currently on neither the **Confirmed** nor the **Tentative** list, then add (Neighbor, Cost, Nexthop) to the **Tentative** list, where

Nexthop is the direction I go to reach Next

- If Neighbor is currently on the **Tentative** list, and the Cost is less than the currently listed cost for the Neighbor, then replace the current entry with (Neighbor, Cost, Nexthop) where Nexthop is the direction I go to reach Next
- If the **Tentative** list is empty, stop. Otherwise, pick the entry from the **Tentative** list with the lowest cost, move it to the **Confirmed** list, and return to Step 2.

Example of building a routing table for any node -3 Marks