CMR
INSTITUTE OF
TECHNOLOGY

USN					

Improvement Test

,	·			improvem.	CIIC I					
Sub	ab ENGINEERING MATHEMATICS IV Code:							15	MAT41	
Date:	31 /5/ 2017	31/5/2017 Duration 90 mins Max Marks 50 Sem IV Brand				Branch	CS	SE-A,B, ISE-A		
		First questio	n is compul	sary. Answei	ANY	SIX quest	tions fr	om Q2 toQ8		
									Marks	OBE CO RBT

1. With usual notation, derive the Rodrigues's formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$	[08]
---	------

With usual notation, derive the Rodrigues's formula $P_n(x) = \frac{1}{2^n n!} \frac{a}{dx^n} (x^2 - 1)^n$	[08]

~		
2.		(2)
	With usual notation prove that $I(x)$	- 1 2 000 %
	with usual notation, prove that $J_{-1/2}(x)$ -	$-\frac{1}{1}$ — $ \cos x $.
	With usual notation, prove that $J_{-\frac{1}{2}}(x) =$	$V(\pi x)$

3	D	C(x) = 3	5 2 . 1 4 5	in terms of Legendre's Polynomials.
J.	Express	$I(x) = x^{-1}$	$-3x^{2} + 14x + 5$	in terms of Legendre's Polynomials.

4. Three boys A, B and C are throwing a ball to each other. A always throws the ball to B
and B always throws the ball to C. But C is just as likely to throw the ball to B as to A. If [07]
C was the first person to throw the ball, find the probabilities that after three throws (i) A
has the ball (ii) b has the ball (iii) C has the ball.

CO2

CO2

CO2

CO5

[07]

[07]

L3

L3

L3

CMR INSTITUTE OF TECHNOLOGY

USN

Improvement Test ENGINEERING MATHEMATICS IV Code: 15MAT41 90 May Mark

Date:	31 / 5/ 2017	Duration	mins	Max Marks	50	Sem	IV	Branch	CS	E-A,B, 1	SE-A
		First qu	estion is	compulsary. An	swer Al	NY SIX 9	uestions f	rom Q2 toQ8			
									Marks	OBE CO	RBT
1. V	With usual nota	tion, derive	the Roo	drigues's form	ula P_n (.	$x) = \frac{1}{2^n n}$	$\frac{d^n}{n!}\frac{d^n}{dx^n}(x$	$(z^2-1)^n$	[80]	CO2	L3
2. V	Vith usual nota	tion, prove	that $J_{-\clip}$	$\int_{2} (x) = \sqrt{\left(\frac{2}{\pi x}\right)} dx$	cos x .				[07]	CO2	L3
3. E	Express $f(x) =$	$x^3 - 5x^2 +$	14x + 5	in terms of Leg	gendre'	s Polyno	omials.		[07]	CO2	L.3
ar C	hree boys A, B nd B always thr was the first pe as the ball (ii) b	rows the baterson to thr	ll to C. I	But C is just as pall, find the pr	likely 1	to throw	the ball	to B as to A. l		CO5	1.3

5. Ten individuals are chosen at random from a population and their heights in
inches are found to be 63.63.66.67.68.69.70.70.71. Test the hypothesis that the
mean height of the universe is 66 inches. $(t_{0.05} = 2.262 \text{ for } 9 \text{ d. f.})$

CO5 L3

6. When a coin is tossed 4 times find, using Binomial distribution, the probability of getting (i) exactly one head (ii) at most three heads (iii) at least three heads

[07] CO4 L3

7. The sales per day in a shop are exponentially distributed with the average sale amounting to Rs. 10000 and net profit 8%. Find the probability that the net profit exceeds Rs. 3000 on two consecutive days.

[07] . CO4 L3

8. Show that probability matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{bmatrix}$ is regular stochastic matrix

[07] CO5 L3

And find the associated unique fixed probability vector.

5. Ten individuals are chosen at random from a population and their heights in inches are found to be 63,63,66,67,68,69,70,70,71,71. Test the hypothesis that the mean height of the universe is 66 inches. $(t_{0.05} = 2.262 \text{ for } 9 \text{ d.f.})$

[07]

CO5 L3

CO4 L3

CO4 L3

CO5 L3

6. When a coin is tossed 4 times find, using Binomial distribution, the probability of getting (i) exactly one head (ii) at most three heads (iii) at least three heads

[07]

7. The sales per day in a shop are exponentially distributed with the average sale amounting to Rs. 10000 and net profit 8%. Find the probability that the net profit exceeds Rs. 3000 on two consecutive days.

[07]

8. Show that probability matrix $P = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{bmatrix}$ is regular stochastic matrix

[07]

And find the associated unique fixed probability vector.

```
Solution - IAT(3) M4 - ( CS-A&B, IS-A)
                P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n
(1.) Prove - Chat
        Let u = (x^2 - 1)^n - (1)
    First we'll prove that un satisfies Leibnits's theo
    Legendre's deff. eg i.e.
          (1-x^2)y'' - 2xy' + n(n+1)y = 0
                   u = 2nx(x^2-1)^{n-1} = \frac{2nxu}{(x^2-1)}
             (x^2-1)y = 2nxy
                     (x^2-1)u_0^2 + 2xu_1^2 = 2n(xu_1+u)
    Dy again
     Word apply deibnité's sule, we get
         (1-x2) un+2 - 2x un+1 + n(n+1) un = 0
        Here u is a polynomial of degree In and un be
       the polynomial of defree n.
       Sey P_n(x) is also a polynomial of degree n
           Let P_n(x) = K U_n = K \frac{d^n}{dx^n} (x^{\frac{1}{2}})^n = k \frac{d^n}{dx^n} (x-1)^n (x+1)^n
   Apply Leibniti's rule on RHS
         P_n(x) = k \left[ (x-1)^n \cdot n! + n_{c_i} n(x-1)^{n-1} \left\{ (x+1)^n \right\}_n + ---
                        + ni(x+1)"]
       Put x=1, we have P_n(1)=1
            =) k = 2"n1, Put in eg" (2)
```

 $P_n(x) = \frac{\int d^n(x^2-1)^n}{2^n n!}$

(2) We have
$$J_{n}(x) = \sum_{0}^{\infty} (-1)^{2} \left(\frac{x}{2}\right)^{n+22} \frac{1}{(n+n+1)\cdot 2!}$$
 (1)

Put $n = -1/2$ $= \left(\frac{1}{2}\right)^{2}$

$$J_{-1/2}(x) = \sum_{0}^{\infty} (-1)^{2} \left(\frac{x}{2}\right)^{\frac{-1}{2}+22} \frac{1}{\left[\frac{3+1}{2}\cdot 2!\right]} - (1)$$

$$= \sqrt{\frac{3}{2}} \left(\frac{1}{\sqrt{x}} - \frac{x^{2}}{\sqrt{x}}\right)^{2} \frac{1}{\left[\frac{1}{2}\cdot 1!\right]} + \left(\frac{x}{2}\right)^{\frac{1}{2}} \frac{1}{\left[\frac{5}{2}\cdot 2!\right]} - (1)$$

$$= \sqrt{\frac{3}{2}} \left(\sqrt{\frac{1}{x}} - \frac{x^{2}}{\sqrt{x}}\right)^{2} + \frac{x^{4}}{16} \left(\frac{x}{3\sqrt{n}}\right)^{\frac{1}{2}} - (1)$$

$$= \sqrt{\frac{3}{2}} \left(1 - \frac{x^{2}}{2!}\right)^{2} + \frac{x^{4}}{4!} - (1)$$

(2)
$$f(x) = x^{3} - 5x^{2} + 14x + 5$$

We have $g(x) = \frac{1}{2}(5x^{3} - 3x) \Rightarrow x^{3} = \frac{2}{5}g_{3}(x) + \frac{3}{5}g_{1}(x)$
 $f_{2}(x) = \frac{1}{2}(3x^{2} - 1) \Rightarrow x^{2} = \frac{2}{3}g_{2}(x) + \frac{1}{3}f_{0}(x) - (2)$
 $f_{1}(x) = x$ & $f_{0}(x) = 1$ — (2)
 $f(x) = \left[\frac{2}{5}f_{3}(x) + \frac{3}{5}f_{1}(x)\right] - 5\left[\frac{2}{3}g_{2}(x) + \frac{1}{3}f_{0}(x)\right] + 14f_{1}(x) + 5f_{0}(x)$
 $= \frac{2}{5}f_{3}(x) + \frac{43}{5}f_{1}(x) - \frac{10}{3}f_{2}(x) + \frac{10}{3}f_{0}(x) - (1)$

P 8: Sale in the shop

$$p \cdot d \cdot f = f(x) := \begin{cases} x e^{-x7}, x>0 \\ 0 \cdot x \leq 0 \end{cases} = 0$$

Mean $\frac{1}{a} := 10000$ $\therefore x = \frac{1}{10000} := 00001$

Let A be theoreum for which profit is $6 \cdot 1$.

 $A \times 6 \cdot 1 := 3000 := A := 37500 = 0$

Prob (profit > 3000) = Prob (Sale > 37500)

 $= \int (.0001) e^{-(.0001)x} dx = (.0001)x$
 $= (.0001) e^{-(.0001)x} dx = e^{-0.375} = 0$

Con consecutive days,

 $= (e^{-0.0375})(e^{-0.0375}) = e^{-0.075} = 0$

8

 $P := \begin{cases} 0 & 1 & 0 \\ V \cdot 6 & V_2 & V_3 \\ 0 & 2 \cdot 3 & V_3 \end{cases}$

$$= (e^{-0.03+1})e^{-0.03+1}$$

$$P^{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{bmatrix} = \begin{bmatrix} 1/6 & 1/2 & 1/3 \\ 1/12 & 23/36 & 5/18 \\ 1/9 & 5/9 & 1/3 \end{bmatrix}$$

" All the enteres are + ine ! P is regular S.M.

F.P.V
$$VP = V^2$$
, where $V = (a, b, c)$ & $a+b+c=1$ —(1)

[a b c] $\begin{cases} 0 & 1 & 0 \\ V_6 & 1/2 & 1/3 \\ 0 & 21/3 & 1/3 \end{cases} = \begin{bmatrix} a, b, c \end{bmatrix}$, where $V = (a, b, c)$ & $a+b+c=1$ —(1)

 $a+b+2c=b$ —(3)
 $b+c=c$ —(4)

From (1) to (4) are get

 $a = \frac{1}{10}$, $b = \frac{6}{10}$, $c = \frac{3}{10}$, $\frac{3}{10}$ [$\frac{1}{10}$, $\frac{6}{10}$] is fixed probined.