													- 60	0
CMR INSTITUTE OF TECHNOLOGY		USN	1	С	R		С	V				NA CONTRACTOR	MR	
			In	iprov	emei	nt Tes	t							
Sub:	DESIGN AND DRAW	WING OF S	STEEL S	TRUC	CTUF	RES			9.		Code		10CV82	
Date:	26/ 05 / 2017	Duration:	4 hours	M	lax N	larks:	100	S	em:	VIII	Bran	ch:	CIVIL	
Note:	Attempt any ONE full	l question f	from Pa	rt A a	nd O	NE qu	estion	froi	m Pa	rt B				
											M	arks	CO	RBT
				P	ART	A							CIV802.	1.3
	A cross beam ISLB 500@869 N/m. The connection has th 150x115x10@200N/t 115mm and web of the clearance between crosuitable scale: i) Fron	e top of the following ii) The cross bear	the flanding does connected the connected th	etails: ction 5mm b of	are i i) bety fillet mair	Fra ween t weld n bear	ne le me the cl of ler n is 1	vel. angle leat ngth	The e – angle 250n	fram 21S e leg nm. T	ed SA of the	15]		
	A beam of ISMB 400 ISHB 400@ 77.4 kg angles. Five bolts of ISMB 400 @ 61.6kg and column ISHB 400 i) Sectional p	/m by a f 20mm di /m 12 bol 0@ 77.4 k	framed a are u ts of 20 g/m. Dr	conne sed to mm	ection o con dia a o a su	ns usi nnect are use	ng 2 the ared to scale	ISA ngles conn	90x9 and ect t	00x8m web he an	of gle	15]	CIV802	1 13
f ii v		HB 300 @6 : 8mm on each signer	630N/m thick de of th to flang	ii) iii) iii) e join	Top of it in ce pla	columr v) Be two r	n: ISH earing ows o	B 200 pla of 4	0 @4 ate bolts	00N/n : 50i each	nm	[15]	CIV802	2 1.3
cr 23	i) Base plate ii) Column - 1 iii) Web cleat iv) Gusset plate v) Flange clea vi) Bolts - 16n noose suitable pitch a	– 900 x60 1 no. ISHB – 2 nos. IS. tes – 2 nos. nm ф and numb	0 x25m 300, bf A 80x80 : 900x6 ISA 80x	m =300 0x8, 2 00x1 80x8,	mm, 50m 2 mn , 900	tf=12 m long n (suit	mm, t g cably t ong	w≈7. aper	5mm ed)	vn bol	ts of	[15]	CIV80	3 [3

1.1		34
V	2	3
1		1

2	PART B	1703	CIV802.4	* *		
nature against interior 160kN. a RCC 4.6 for 6	The centre line of a roof truss is shown in Figure below. The magnitude and nature of forces in each member under service load condition is shown against each member. Design top chord members, bottom chord members and interior members. Design the bearing plate to resist support reaction of 160kN. Also design the anchor bolts for a pull of 40kN to connect the truss to a RCC column 300 x 300 of M20 grade concrete. Use bolts of property class 4.6 for connections. Draw to a suitable scale. i) Elevation of the truss greater than half span. ii) Enlarged view of left hand support. iii) Enlarged view of joint C.					
	A 130 KN(T) G 85KN(T) F 100KU(T) A 3m. + 3m. + 3m. +					
i) ii) iii) iv) v) vi) vii) viii) ix)	Span of crane girder = 20m Span of Gantry girder = 7m Capacity of the crane = 220kN Self weight of crane excluding the crab = 200 kN Weight of crab = 60kN Wheel base distance = 3.4m Minimum hook approach = 1.1m Self weight of rail = 0.3kN/mm Height of rail = 70mm a suitable scale: Plan details Side Elevation Section through the Gantry	[70]	CIV802.4	L		

rdi

Color Color

HOD

Ay Step 1:

span of crane girder = 20 m

span of Gandry girder = 7 m

capacity of crane = 220 KN

Self weight of cran = 200 KN

wheel base = 3.4 m

Minimum hook distance = 1.1 m

Self wit. of rail = 0.3 KN/mm

Step 2:-

\\ V = 0

IMA = 0

(280×1.1) +(200×10) - PB×20=0

be placed as shown below,

Max BM =
$$\frac{2N}{L} \left(\frac{L}{2} - \frac{C}{4} \right)^{2}$$
= $\frac{2 \times 228}{7} \left(\frac{7}{2} - \frac{3.4}{4} \right)^{2}$
= $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} \times \frac{1}{4$

=> Foctored SF = 345.25 XIIS = 517.875 FNM//
Factored BH = 457.46 XIIS = 686.19 FNM/

⇒ consider SF and BM due to dead load:

Assume self not of "= 1.6 KN/m

self not of rail = 0.3 FN/m

1.9 KN/m

CMR

Factored value = 1.9×1.5 = 2.85 FN/m/

$$SF = \frac{\omega L}{2} = \frac{2.85 \times 7}{2} = 9.975 \text{ EN}$$

Total SF = 9.975 + 517.875 = 527.85 FN//
Total BH = 17.45 + 686.19 = 703.64 FNm//

Step 4:

Lateral force = 10% of (60+220)

= 28 k.N//

on sech wheel = 28 = 7 KN

Homent due to lateral force = 7×686-19

= 14.04 Enm/

WET, Max permissible deplection = span = 9.33 mm/ WKT, Deflection due to Max permissible defliction = self wellsis + smax 9.33= 1 + 1.146 x100 HOTE A due to self est - Imm in Increasing I value by 30%, we get, 1. I = X109 mm4

⇒ Smax = 1.3752×1016 6 E I = 1.146×1010 Bould on I value. deciding a section. Steel Stable ISHB 500, ISMC 350 Top plate = 250×16 Bottom plate = 320×32 Area = 317 28 mm2 Cxx = 285.2 mm tream top flage = 30 mm

brickness (Bossom flage = 43.5 mm 1 x x = 184963.8 x 1046m4 = 1.849638K109 mm4

+ ((196.86×9.9) × 98.43) + (273.74×9.9)×136.87) + [(250×14.7) × 281.09] + ((250×16) × 296.44) + (8-1+16+14-7 +2+3.74)-(44) [5366 × 288.14] :. ZP= (2330214.4 + 750471.75+ 191831.60 + 370921.25 + + 15 4615 9.24 = 7.408×10 mm3// Md = Bb x 2P x fcx 6. BUt, | 1.1×+2×E | 1+ 1 [11/44]]

$$E = 2 \times 10^{5}$$

$$Ty = Tmn = 86.6$$

$$h = 556.1 - \frac{1}{2} \left(304 \text{ u} 3.5 \right) = 519.35$$

$$th = 30$$

$$(700) \left(\frac{1}{86.6} \right)^{2} \left(\frac{7000}{86.6} \right)^{2} \left(\frac{7000}{86.6} \right)^{2}$$

$$= 332.32 \text{ u} 3 \left[1 + \frac{1}{20} \left(\frac{4000}{86.6} \right)^{2} \right]^{0.5}$$

$$= 332.32 \text{ u} 3 \left[1 + \frac{1}{20} \left(\frac{4000}{86.6} \right)^{2} \right]^{0.5}$$

$$= 332.32 \text{ u} 3 \left[1 + \frac{1}{20} \left(\frac{4000}{86.6} \right)^{2} \right]^{0.5}$$

$$= 332.32 \text{ u} 3 \left[1 + \frac{1}{20} \left(\frac{4000}{86.6} \right)^{2} \right]^{0.5}$$

$$= 332.32 \text{ u} 3 \left[1 + \frac{1}{20} \left(\frac{4000}{86.6} \right)^{2} \right]^{0.5}$$

$$= 332.32 \text{ u} 3 \left[1 + \frac{1}{20} \left(\frac{4000}{80.6} \right)^{2} \right]^{0.5}$$

$$= 332.32 \text{ u} 3 \left[\frac{1}{20} \right]^{2} \left[\frac{4000}{80.435} \right]^{2}$$

$$= 188.6 \text{ u} 80.435$$

$$= 186.4$$

an suleuring, we get, FW= (150+ 270.9) x 9.9x 227 = 945.8 EN > 527.85 KN (Hence Safe) teh 11: Connection details :-> Horizontal douce = Vx(Eag) 527.85 × 10 × [6] 1.849638×109 5(ag) = 5366x (312.54-24.4) + (250×16) x (312.54-8.1-16)

= 2731919.24 .. Houigo + of force = 527.85×103 × 2731919.24 = 779.63 W => WKT, Shongth of weld = 0.7 x 5 x 2 x fu 779.63 = 0.7x Sx 1x 410 S= 4.70 % 5 mm// i. Provide welding of 5mm where ever regu

Design of connection assume Dia of bolt = 20mm Clars 4.6 shear strength of bolt Irom Is 800: 2007 pg - 75 Vdeb = Vnsb Vreb = 44 (n, Alb + Ag Alb) nn = 2 $= \frac{400}{\sqrt{2}} \left[2 \times 0.78 \times \frac{\pi}{4} \times 20^{1} \right]$ 113.18 EN = 90.54 KM Bearing strength of bolt Is 800:2007 pg-75 Yapb = Yhpb clas 10.3.4 Vnpb: de 2.5 lebt fuxd 1cb = e 3do, p -0.25, Jub 1 e= 1.7do = 37.4 × 40 mm P = 2.5d = 50 nm $\frac{40}{3\times22} = 0.60 \; ; \; \frac{50}{3\times22} = 0.5 \; ; \; \frac{400}{410} = 0.97 \; ; \; 1$ [Kb = 0.5] Vnpb = 2.5 x0.5 x 6 x 4 tox 20 = 61.5 kN Ydeb = 61.5 = 49.2 LN Hence provide bott value = 49.21cm

no. of botts =
$$\frac{210}{149.2} = 4.26 \text{ km} = 500$$

The sign of bottom chard member

max^m tension force = 100 km

tentored tension force = 100 km

thom Is abo: 2001 pg 32 clo 6.2

Tag = $\frac{49.49}{100}$

150x10² = $\frac{49.49}{100}$

110x10² = $\frac{49.49}{100}$

A = 11-36 cm2 = 1136 mm2

Degign connection

Bearing strength of boil

VAPL ? 2.5 x d x k 5 x t x fu

e=1.7x14 = 23.8 \$ 25 mm P = 2.5x1.4 = 35 mm

Vnpb = 2.5 x0.46 x12 x6 x 410 = 33.94 EN

Provide boit value 27.15 km

Check for rapture

Pg: 30 class 6-3-3

Tan =
$$\frac{0.9 \, \text{Anc}}{\text{Ym}}$$
, $\frac{1}{\text{Ym}}$ $\frac{1}{\text{Ym}$

$$= 1.4 - 0.076 \left(\frac{50}{6}\right) \left(\frac{950}{410}\right) \left(\frac{12}{245}\right) \leq \frac{410 \times 1.1}{250}$$

Anc =
$$(50 - \frac{6}{2} - 14)6 = 198 \text{ mm}^2$$

Ago = $(50 - \frac{6}{2})6 = 282 \text{ mm}^2$

140.48 EN X2

280.98KN > 150 KN

Hence sale

cheek Fer block shear

P9 33 Cla 6.4.1

$$Avg = (7x35 + 25)x6 = 1620 \text{ mm}^2$$

$$Tbd_1 = \left[\frac{1620 \times 250}{3 \times 1.1} + \frac{0.9 \times 126 \times 410}{1.25} \right] = 249.76 \text{ EN}$$

413.38 kN > 150 0N

Honce safe.

```
Design of inner compressive member
               max m compressive ferez = 55 KM
                    fectored forced > 55 X1.5 > 82.5 LM.
                Assume Led = 30 to 120 N/mm2
                               P = Ax 7cd
                         A = 82.5 x10 / 50
                                   = 1650 Kmm²
         from Steel tende pg-4, Rolled steel equal angle
                            ISA 100 x 100 x 8
                                  A = 1539 mm YVV = 1-95 cm = 19-5 cm
               7 = \ K1 + K2 22 + k3 do
                    k_1 = 0.7 k_2 = 0.6 k_{3} = 5 Ds 800; 2007

\frac{1500}{250} = \frac{1500}{19.5} = \frac{76.92}{88.85} = 0.865

                  \frac{\lambda_0}{2t} = \frac{b_1 + b_2}{2 \times 8} = \frac{100 + 100}{2 \times 8} = \frac{12.5}{88.85} = 0.140
                         2c = \[ 0.7 + \( 0.865^2 \times 0.6 \) + \( 5 \times 0.140^2 \)
                                7 = 1.11
                     Fed = \frac{1}{4} \rangle \text{Ymo} \quad \text{From Pg 34 clan 7.1.} \\
\phi + \left( \phi^2 - \lambda^2 \right)^{0.5} \quad \text{Te 500: 2007}
                        \phi = 0.5 \left[ 1 + 2 \left( \lambda^{2} - 0.2 \right) + \lambda^{2} \right]
2 = 0.49
```

Design of inner tension member

maxin Ethsion Ferce = 85 KM

factored tension torce - 85x1.5 = 127.5 km

19-32 IS 800: 2007

$$45 = \frac{10.7 \times 2.70}{250} = 61 \text{ mm}^2$$

Increase alea by 30 %.

Provide ISA SOXSOX6 mm (minimum)

Design connection

adopt 12 mm dia 6014

Bearing Cagacity of bolt

Vnpb = 2-5 x 0.46 x 12 x 6 x 410 = 33 948

$$\beta = 1.4 - 0.076 \left(\frac{50}{6}\right) \left(\frac{400}{410}\right) \left(\frac{72}{248}\right) = \frac{410 \times 1.21}{250} > 0.7$$

140. ut x 2

Hence safe.

Check for block shew

Tbd, = 499 52 EN > 127-5 EN Tbd. = 413 36 KN 1127.5 EN trense safe Bearing Plate design support force = 160 km factored force = 160 x1.5 = 240 EN 4 rom Is \$156: 200 cla 34.4 Permissbu Aren = 0.45 Ytck = 0. UIX2D = 9 N/mm2 Area 9 Plate = 240 x103 = 26666.66 consider square plate = \$26666.66 = 163-29 2 200 nm Size 9 1 adopt = 200 mm x 200 mm Bearing pressure = 240×103 = 6 N/mm = 250×1× (6+6)