
Page 1 of 6

CMR
INSTITUTE OF
TECHNOLOGY USN

Internal Assessment Test - III

Sub: Programming Languages Code: 10CS666

Date: 31/ 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: VI Branch: CSE

Answer Any FIVE FULL Questions

Marks
OBE

CO RBT

1 Briefly describe the keyword “Synchronised” in java. How is it used in
concurrency?

[10] CO2,
CO3

L2

ans Synchronized keyword in Java has to do with thread-safety, that is, when
multiple threads read or write the same variable.
This can happen directly (by accessing the same variable) or indirectly (by using
a class that uses another class that accesses the same variable).

The synchronized keyword is used to define a block of code where multiple
threads can access the same variable in a safe way.

Syntax-wise the synchronized keyword takes an Object as it's parameter (called
a lock object), which is then followed by a { block of code }.

When execution encounters this keyword, the current thread tries to
"lock/acquire/own" (take your pick) the lock object and execute the associated
block of code after the lock has been acquired.

Any writes to variables inside the synchronized code block are guaranteed to be
visible to every other thread that similarly executes code inside a synchronized
code block using the same lock object.

Only one thread at a time can hold the lock, during which time all other threads
trying to acquire the same lock object will wait (pause their execution). The lock
will be released when execution exits the synchronized code block.

Synchronized methods:

Adding synchronized keyword to a method definition is equal to the entire
method body being wrapped in a synchronized code block with the lock object
being this (for instance methods) and ClassInQuestion.getClass() (for class
methods).

- Instance method is a method which does not have static keyword.
- Class method is a method which has static keyword.
Technical



Page 2 of 6

Without synchronization, it is not guaranteed in which order the reads and
writes happen, possibly leaving the variable with garbage.
(For example a variable could end up with half of the bits written by one thread
and half of the bits written by another thread, leaving the variable in a state that
neither of the threads tried to write, but a combined mess of both.)

It is not enough to complete a write operation in a thread before (wall-clock
time) another thread reads it, because hardware could have cached the value of
the variable, and the reading thread would see the cached value instead of what
was written to it.
Conclusion

Thus in Java's case, you have to follow the Java Memory Model to ensure that
threading errors do not happen.
In other words: Use synchronization, atomic operations or classes that use them
for you under the hoods.

2 Why does implementing a lock require atomic operations supported by
hardware ? Explain using the basic spin-lock as example.

[10] CO3 L2

ans Locks typically require hardware support for efficient implementation. This
support usually takes the form of one or more atomic instructions such as "test-
and-set", "fetch-and-add" or "compare-and-swap". These instructions allow a
single process to test if the lock is free, and if free, acquire the lock in a single
atomic operation.
Uniprocessor architectures have the option of using uninterruptable sequences
of instructions—using special instructions or instruction prefixes to disable
interrupts temporarily—but this technique does not work for multiprocessor
shared-memory machines. Proper support for locks in a multiprocessor
environment can require quite complex hardware or software support, with
substantial synchroniIn concurrent programming, an operation (or set of
operations) is atomic, linearizable, indivisible or uninterruptible if it appears to
the rest of the system to occur instantaneously. Atomicity is a guarantee of
isolation from concurrent processes. Additionally, atomic operations commonly
have a succeed-or-fail definition—they either successfully change the state of
the system, or have no apparent effect.

In a concurrent system, processes can access a shared object at the same time.
Because multiple processes are accessing a single object, there may arise a
situation in which while one process is accessing the object, another process
changes its contents. This example demonstrates the need for linearizability. In a
linearizable system although operations overlap on a shared object, each
operation appears to take place instantaneously. Linearizability is a strong
correctness condition, which constrains what outputs are possible when an
object is accessed by multiple processes concurrently. It is a safety property
which ensures that operations do not complete in an unexpected or
unpredictable manner. If a system is linearizable it allows a programmer to
reason about the system.

Atomicity is often enforced by mutual exclusion, whether at the hardware level



Page 3 of 6

building on a cache coherency protocol, or the software level using semaphores
or locks. Thus, an atomic operation does not necessarily actually occur
instantaneously. The benefit comes from the appearance: the system behaves as
if each operation occurred instantly, separated by pauses. This makes the system
consistent. Because of this, implementation details may be ignored by the user,
except insofar as they affect performance. If an operation is not atomic, the user
will also need to understand and cope with sporadic extraneous behaviour
caused by interactions between concurrent operations, which by their nature are
likely to be hard to reproduce and debug.zation issues.

3 What is preemption ? Why is it required ? [10] CO3 L2

ans In computing, preemption is the act of temporarily interrupting a task being
carried out by a computer system, without requiring its cooperation, and with
the intention of resuming the task at a later time. Such changes of the executed
task are known as context switches. It is normally carried out by a privileged
task or part of the system known as a preemptive scheduler, which has the
power to preempt, or interrupt, and later resume, other tasks in the system.
The term preemptive multitasking is used to distinguish a multitasking operating
system, which permits preemption of tasks, from a cooperative multitasking
system wherein processes or tasks must be explicitly programmed to yield when
they do not need system resources.

In simple terms: Preemptive multitasking involves the use of an interrupt
mechanism which suspends the currently executing process and invokes a
scheduler to determine which process should execute next. Therefore, all
processes will get some amount of CPU time at any given time.

In preemptive multitasking, the operating system kernel can also initiate a
context switch to satisfy the scheduling policy's priority constraint, thus
preempting the active task. In general, preemption means "prior seizure of".
When the high priority task at that instance seizes the currently running task, it
is known as preemptive scheduling.

The term "preemptive multitasking" is sometimes mistakenly used when the
intended meaning is more specific, referring instead to the class of scheduling
policies known as time-shared scheduling, or time-sharing.

Preemptive multitasking allows the computer system to more reliably guarantee
each process a regular "slice" of operating time. It also allows the system to
rapidly deal with important external events like incoming data, which might
require the immediate attention of one or another process.

At any specific time, processes can be grouped into two categories: those that
are waiting for input or output (called "I/O bound"), and those that are fully
utilizing the CPU ("CPU bound"). In early systems, processes would often
"poll", or "busywait" while waiting for requested input (such as disk, keyboard
or network input). During this time, the process was not performing useful
work, but still maintained complete control of the CPU. With the advent of



Page 4 of 6

interrupts and preemptive multitasking, these I/O bound processes could be
"blocked", or put on hold, pending the arrival of the necessary data, allowing
other processes to utilize the CPU. As the arrival of the requested data would
generate an interrupt, blocked processes could be guaranteed a timely return to
execution.

Although multitasking techniques were originally developed to allow multiple
users to share a single machine, it soon became apparent that multitasking was
useful regardless of the number of users. Many operating systems, from
mainframes down to single-user personal computers and no-user control
systems (like those in robotic spacecraft), have recognized the usefulness of
multitasking support for a variety of reasons. Multitasking makes it possible for
a single user to run multiple applications at the same time, or to run
"background" processes while retaining control of the computer.

4 What are some of the ways of inter process communication ? Briefly explain
them.

[10] CO3 L1

ans A process can be of two type:

Independent process.
Co-operating process.

An independent process is not affected by the execution of other processes
while a co-operating process can be affected by other executing processes.
Though one can think that those processes, which are running independently,
will execute very efficiently but in practical, there are many situations when co-
operative nature can be utilised for increasing computational speed, convenience
and modularity. Inter process communication (IPC) is a mechanism which
allows processes to communicate each other and synchronize their actions. The
communication between these processes can be seen as a method of co-
operation between them. Processes can communicate with each other using
these two ways:

Shared Memory
Message passing

An operating system can implement both method of communication. First, we
will discuss the shared memory method of communication and then message
passing. Communication between processes using shared memory requires
processes to share some variable and it completely depends on how programmer
will implement it. One way of communication using shared memory can be
imagined like this: Suppose process1 and process2 are executing simultaneously
and they share some resources or use some information from other process,
process1 generate information about certain computations or resources being
used and keeps it as a record in shared memory. When process2 need to use the
shared information, it will check in the record stored in shared memory and take
note of the information generated by process1 and act accordingly. Processes
can use shared memory for extracting information as a record from other
process as well as for delivering any specific information to other process.



Page 5 of 6

The IPC mechanism can be classified into pipes, first in, first out (FIFO), and
shared memory. Pipes were introduced in the UNIX operating system. In this
mechanism, the data flow is unidirectional. A pipe can be imagined as a hose
pipe in which the data enters through one end and flows out from the other end.
A pipe is generally created by invoking the pipe system call, which in turn
generates a pair of file descriptors. Descriptors are usually created to point to a
pipe node. One of the main features of pipes is that the data flowing through a
pipe is transient, which means data can be read from the read descriptor only
once. If the data is written into the write descriptor, the data can be read only in
the order in which the data was written.

The working principle of FIFO is very similar to that of pipes. The data flow in
FIFO is unidirectional and is identified by access points. The difference between
the two is that FIFO is identified by an access point, which is a file within the
file system, whereas pipes are identified by an access point.

5 When will a synchronisation mechanism be blocking ? How can this be
addressed using CAS ?

[10] CO3 L2

6 What are the 6 types of thread creation ? Explain any 2. [10] CO3 L2

ans There is exactly one way to create a new thread in Java and that is to instantiate
java.lang.Thread (to actually run that thread you also need to call start()).

Everything else that creates threads in Java code falls back to this one way
behind the cover (e.g. a ThreadFactory implementation will instantiate Thread
objects at some point, ...).

There are two different ways to specify which code to run in that Thread:
Implement the interface java.lang.Runnable and pass an instance of the class
implementing it to the Thread constructor.
Extend Thread itself and override its run() method.

The first approach (implementing Runnable) is usually considered the more
correct approach because you don't usually create a new "kind" of Thread, but
simply want to run some code (i.e. a Runnable) in a dedicated thread.

7 Briefly describe the following:
a) Memory coherence
b) Monitors
c) Race condition
d) Interrupt
e) Thread pool

[2x5] CO2,
CO3

L2

Ans a) Memory coherence is an issue that affects the design of computer systems in
which two or more processors or cores share a common area of memory.
In multiprocessor (or multicore) systems, there are two or more processing
elements working at the same time, and so it is possible that they simultaneously
access the same memory location. Provided none of them changes the data in
this location, they can share it indefinitely and cache it as they please. But as



Page 6 of 6

soon as one updates the location, the others might work on an out-of-date copy
that, e.g., resides in their local cache. Consequently, some scheme is required to
notify all the processing elements of changes to shared values; such a scheme is
known as a memory coherence protocol, and if such a protocol is employed the
system is said to have a coherent memory.

b) In concurrent programming, a monitor is a synchronization construct that
allows threads to have both mutual exclusion and the ability to wait (block) for a
certain condition to become true. Monitors also have a mechanism for signalling
other threads that their condition has been met. A monitor consists of a mutex
(lock) object and condition variables. A condition variable is basically a
container of threads that are waiting for a certain condition. Monitors provide a
mechanism for threads to temporarily give up exclusive access in order to wait
for some condition to be met, before regaining exclusive access and resuming
their task.

c) A race condition or race hazard is the behavior of an electronic, software, or
other system where the output is dependent on the sequence or timing of other
uncontrollable events. It becomes a bug when events do not happen in the order
the programmer intended. The term originates with the idea of two signals
racing each other to influence the output first.

d) In system programming, an interrupt is a signal to the processor emitted by
hardware or software indicating an event that needs immediate attention. An
interrupt alerts the processor to a high-priority condition requiring the
interruption of the current code the processor is executing. The processor
responds by suspending its current activities, saving its state, and executing a
function called an interrupt handler (or an interrupt service routine, ISR) to deal
with the event. This interruption is temporary, and, after the interrupt handler
finishes, the processor resumes normal activities. There are two types of
interrupts: hardware interrupts and software interrupts.

e) In computer programming, a thread pool is a software design pattern for
achieving concurrency of execution in a computer program. Often also called a
replicated workers or worker-crew model, a thread pool maintains multiple
threads waiting for tasks to be allocated for concurrent execution by the
supervising program. By maintaining a pool of threads, the model increases
performance and avoids latency in execution due to frequent creation and
destruction of threads for short-lived tasks. The number of available threads is
tuned to the computing resources available to the program, such as parallel
processors, cores, memory, and network sockets.


