
Page 1 of 22

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - III

Sub: Software Testing Code: 10CS842

Date: 27/ 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: 8-A,B Branch: CSE

Answer Any FIVE FULL Questions

Marks
OBE

CO RBT
1 Explain Test & Analysis strategies of Clean room process model [10] CO3 L3

2 Explain how to improve the process & ODC, classification of triggers, customer
impact, defect types

[10] CO2 L3

3 (a) Explain Capture & Replay [7] CO2 L3
3 (b) Define ODC, Root cross analysis [3] CO2 L1
4 Explain Test & Analysis strategies of SRET [10] CO3 L3
5 (a) Explain Extreme programming strategy [6] CO3 L3
5 (b) Define critical path, critical dependence [4] CO3 L3
6 Explain Risk planning [10] CO3 L3
7 Write the functional test specification for check configuration [10] CO3 L3

8 How documents are being organized? Give the sample naming conversion,
compliant with IEEE standards

[10] CO4 L3

Course Name / Code Software Testing / 10CS842

Course Outcomes

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

PO
9

PO
10

PO
11

PO
12

C842.1 Describe the Terminology & levels of testing
1 2 1 0 0 0 0 1 0 1 1 0

C842.1 Write the Test Document, Scenario, Case, Plan
1 1 2 1 0 0 0 1 2 1 0 0

C842.1 Explain the Software testing process, Techniques with
examples 1 2 1 1 0 0 0 1 0 1 0 0

C842.1 Describe the process framework-Validation,
Verification and Basic principles 1 1 1 1 0 0 0 1 0 1 0 0

C842.1
Explain the process by using Testing tools 1 1 1 1 2 0 0 1 1 1 2 0

C842.1 Demonstrate the process improvement in software
testing 1 1 1 2 0 0 0 1 1 3 2 0

Revised Bloom’s Taxonomy (RBT) Programme Outcome

Cognitive
level

KEYWORDS
PO1 - Engineering knowledge;
PO2 - Problem analysis;
PO3 - Design/development of solutions;
PO4 - Conduct investigations of complex
problems;
PO5 - Modern tool usage;
PO6 - The Engineer and society; PO7-
Environment and sustainability;
PO8 – Ethics;
PO9 - Individual and team work;
PO10 - Communication;
PO11 - Project management and
finance;
PO12 - Life-long learning

L1 List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.

L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify,
experiment, discover.

L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support,
conclude, compare, summarize.

Page 2 of 22

1.Cleanroom process model

Page 3 of 22

Page 4 of 22

2.2. ODC classification

Page 5 of 22

Page 6 of 22

Page 7 of 22

Page 8 of 22

Page 9 of 22

Page 10 of 22

Page 11 of 22

Page 12 of 22

Page 13 of 22

Page 14 of 22

Page 15 of 22

Page 16 of 22

Page 17 of 22

Page 18 of 22

Page 19 of 22

Page 20 of 22

3. Capture & Replay

Sometimes it is difficult to either devise a precise description of expected behavior or adequately
characterize correct behavior for effective self-checks. If one cannot completely avoid human involvement in
test case execution, one can at least avoid unnecessary repetition of this cost and opportunity for error. The
principle is simple. The first time such a test case is executed, the oracle function is carried out by a human,
and the interaction sequence is captured. Provided the execution was judged to be correct, the captured log
now forms an (input, predicted output) pair for subsequent automated retesting. Distinguishing between
significant and insignificant variations from predicted behavior, in order to prolong the effective lifetime of a
captured log, is a major challenge for capture/replay testing. Capturing events at a more abstract level
suppresses insignificant changes.

Mapping from concrete state to an abstract model of interaction sequences is sometimes possible but is
generally quite limited. A more fruitful approach is capturing input and output behavior at multiple levels of
abstraction within the implementation. We have noted the usefulness of a layering which abstract input
events are captured in place of concrete events. Typically, there is a similar abstract layer in graphical

Page 21 of 22

output, and much of the capture/replay testing can work at this level. Small changes to a program can still
invalidate a large number of execution logs.

the capture phase works by (1) identifying all the interactions between observed and external code, (2)
suitably instrumenting the application code, and (3) efficiently capturing interactions at runtime. In the
replay phase, our technique first performs two steps analogous in nature to the first two steps of the capture
phase: it (1) identifies all the interactions between observed and external code, and (2) suitably instruments
the application code. Then, the technique inputs an event log generated during capture and, for each event,
either performs some action on the observed code or consumes some action coming from the observed code.

• Technique for identifying and eliminating process faults
– First developed in the nuclear power industry; used in many fields.

• Four main steps
– What are the faults?
– When did faults occur? When, and when were they found?
– Why did faults occur?
– How could faults be prevented?

• Same purpose as other software design documentation:
– Guiding further development
– Preparing for maintenance

• Test design specification documents:
– describe complete test suites
– may be divided into

• unit, integration, system, acceptance suites (organize by granularity)
• functional, structural, performance suites (organized by objectives)
• ...

– include all the information needed for
• initial selection of test cases
• maintenance of the test suite over time

– identify features to be verified (cross-reference to specification or design document
– include description of testing procedure and pass/fail criteria (references to scaffolding and

oracles)
– includes (logically) a list of test cases

• Complete test design for individual test case
• Defines

– test inputs
– required environmental conditions
– procedures for test execution

3(b) Root Cause Analysis

7. Change Configuration

Page 22 of 22

– expected outputs
• Indicates

– item to be tested (reference to design document)
• Describes dependence on execution of other test cases

Is labeled with a unique identifier

