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Answer Any FIVE FULL Questions
OBE
Marks
CO |RBT
1 Explain Test & Analysis strategies of Clean room process model [10] |CO3 |3
2 Explain how to improve the process & ODC, classification of triggers, customer | [10] |[CO2 |L3
impact, defect types
3 (a) |Explain Capture & Replay [7] |CO2 |3
3 (b) |Define ODC, Root cross anaysis [3] |CO2 |L1
4 Explain Test & Analysis strategies of SRET [10] |CO3 |3
5(a) |Explain Extreme programming strategy [6] |CO3 |L3
5 (b) |Define critical path, critica dependence [4] |CO3 L3
6 Explain Risk planning [10] |CO3 |3
7 Write the functional test specification for check configuration [10] |[CO3 |3
8 How documents are being organized? Give the sample naming conversion, [10] |CO4 L3
compliant with |[EEE standards
| CourseName / Code | Software Testing / 10CS842 |
Course Outcomes = N @ 9 Q ~ « Q = = =
g 8 g 8 8 B8 g & 8 8 R 8
cs4a2.1 | Describe the Terminology & levels of testing 1 2 1 0 0 0 0 1 0 1 1 0
C842.1 = Writethe Test Document, Scenario, Case, Plan 1 1 2 1 0 0 0 1 5 1 0 0
C842.1 | Explain the Software testing process, Techniques with
examples 1 1 0 1 0 0
C842.1 | Describe the process framework-Validation,
Verification and Basic principles 1 1 1 1 0 0 0 1 0 1 0 0
c8a21 Explain the process by using Testing tools 1 1 1 1 2 0 0 1 1 1 2 0
C842.1 tl?;r:%nstrate the process improvement in software 1 1 1 2 0 0 0 1 1 3 2 0
Revised Bloom’s Taxonomy (RBT) Programme Outcome
Cogriive KEYWORDS ro2 - Proomaralys
. . . . . PO3 - Design/devel opment of solutions;
L1 List, define, tell, describe, identify, show, |abel, collect, examine, tabulate, quote, name, who, when, where, efc. | po4 - Conduct investigations of complex
L2 summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend ‘F’,B’Q'ﬁdan tool usage;
L3 Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, POG - The Engineer and sodiety; PO7-
experiment, discover. ngsr-ogtﬁncts-and sustainability;
L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer. POO - Individual and team work;
PO10 - Communication;
L5 Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, PO11 - Project management and

conclude, compare, summarize.
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finance;
PO12 - Life-long learning



1.Cleanroom process model

Page 2 of 22



Page 3 of 22



2. ODC classification
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Example Process: Software Reliability
Engineering Testing (SRET)

Define "“Necessary”

Reliability

|

Operational Profiles

Development

by Prepare
= for Testing
Interpret Failure
———® Execute Data
tests
Requirements and Design and System Test and

Architecture

Implementation

Acceptance Test
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3. Capture & Replay

Sometimes it is difficult to either devise a precise description of expected behavior or adequately
characterize correct behavior for effective self-checks. If one cannot completely avoid human involvement in
test case execution, one can at least avoid unnecessary repetition of this cost and opportunity for error. The
principle is smple. The first time such atest case is executed, the oracle function is carried out by a human,
and the interaction sequence is captured. Provided the execution was judged to be correct, the captured log
now forms an (input, predicted output) pair for subsequent automated retesting. Distinguishing between
significant and insignificant variations from predicted behavior, in order to prolong the effective lifetime of a
captured log, is a maor chalenge for capture/replay testing. Capturing events at a more abstract level
suppresses insignificant changes.

Mapping from concrete state to an abstract model of interaction sequences is sometimes possible but is
generally quite limited. A more fruitful approach is capturing input and output behavior at multiple levels of
abstraction within the implementation. We have noted the usefulness of a layering which abstract input
events are captured in place of concrete events. Typicaly, there is a similar abstract layer in graphical
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output, and much of the capture/replay testing can work at this level. Small changes to a program can still
invalidate alarge number of execution logs.

the capture phase works by (1) identifying all the interactions between observed and external code, (2)
suitably instrumenting the application code, and (3) efficiently capturing interactions at runtime. In the
replay phase, our technique first performs two steps analogous in nature to the first two steps of the capture
phase: it (1) identifies al the interactions between observed and external code, and (2) suitably instruments
the application code. Then, the technique inputs an event log generated during capture and, for each event,
either performs some action on the observed code or consumes some action coming from the observed code.

Rest of the ﬂg{l'mtlm :

hCapLumd !
| Bubsystam r.‘

Replay:

Ewvant
Log

ai) (1)

Figure 2: Overview of the capture-replay technique.

3(b) Root Cause Analysis

» Techniquefor identifying and eliminating process faults

— First developed in the nuclear power industry; used in many fields.
* Four main steps

— What are the faults?

— When did faults occur? When, and when were they found?

— Why did faults occur?

— How could faults be prevented?

7. Change Configuration

e Same purpose as other software design documentation:
— Guiding further devel opment
— Preparing for maintenance
» Test design specification documents:
— describe complete test suites
— may bedivided into
e unit, integration, system, acceptance suites (organize by granularity)
» functional, structural, performance suites (organized by objectives)
— include al the information needed for
* initial selection of test cases
* maintenance of the test suite over time
— identify featuresto be verified (cross-reference to specification or design document
— include description of testing procedure and pass/fail criteria (references to scaffolding and
oracles)
includes (logically) alist of test cases
. Compl ete test design for individual test case
* Defines
— testinputs
— required environmental conditions
— procedures for test execution
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— expected outputs
e Indicates
— itemto betested (reference to design document)
»  Describes dependence on execution of other test cases
Islabeled with aunique identifier
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