CMR
INSTITUTE OF
TECHNOLOGY USN
Improvement Test
Sub: | MP & MC Code: [15CS44
Date: | 30/05/2017 | Duration: (90 mins |\ ¥|50 | sem: IV | Branch: |CSE, ISE
Answer Any FIVE FULL Questions
OBE
Marks coO RB
>
1 (a) Explain ARM7 move instructions with relevant examples indicating Pre [05] CO4 L1
and post execution conditions.
(b) Explain the various syntax for barrel shifter data processing instruction of [05]
ARM?
2 (a) Explain the syntax of arithmetic instructions to implement addition and [05] CO4 L1
subtraction of 32-bit signed and unsigned values. Give examples for each
instruction.
. : : . [09]
(b) Explain the syntax and usage of B, BL, BX and BLX instructions with
necessary examples.
3 (a) Write an ARM assembly language code snippet to create an infinite loop. [05] CO4 L3
(b) Write an assembly language code which uses BL instruction to call a [05]
subroutine to perform addition of three data words stored in registers.
Specify the return statement with in the body of subroutine.
4 (a) Explain with examples the different addressing modes available with [05] CO4 L2
single register transfer instructions.
05
(b) Given: mem32[0x80018] = 0x03, mem32[0x80014] = 0x02, [0°]
mem32[0x80010] = 0x01, r0 = 0x00080010, r1 = 0x00000000 ,r2 =
0x00000000, r3 = 0x00000000, r4= 0x000800C
Show the values updated after execution of
e LDMIATO!, {r1-r3}
e STMDB r4!,{r1-r3}
5 (a) Explain the STACK operations in ARM7. Describe different addressing  [05] CO4 L1
methods for stack operations.
05
(b) Explain SWP instruction. Describe any one use of SWP instruction with [0°]
necessary code snippet.
6 (a) What is SWI? Explain with proper syntax and an example. [05] CO4 L1
[05]

(b) Demonstrate all Program Status Register Instructions with proper syntax
formats.

Page 1 of 16




7 (a) Explain different types of coprocessor instructions with their syntax. [05]

(b) For the given set of Instructions write the post condition of CPSR [05]
register: Assume suitable data for cpsr.PRE cpsr=nzcvglFt_svc

MRS r1, cpsr
BIC r1, r1, #0x80
MSR cpsr_c, rl

8 Explain different types of functions provided by INT 10H and INT 21H. [10]

9  Write a program using INT 10H to: [10]
(a) Change the video mode
(b) Display the letter “D” in 200H locations with attributes black on white
blinking.
10  Write an ALP that does the following: [10]
(a) Clears the screen
(b) Set the cursor to the center of the screen

Page 2 of 16

CO4

CO4

CO2
CO2

CO2

L1

L2

L1
L3

L3



1 a. Explain ARM7 move instructions with relevant examples indicating Pre and post execution

conditions.

Move Instructions

Move is the simplest ARM instruction. It copies N into a destination register Rd, where

N is a register or immediate value.

Note: second operand N for all data processing instructions. Usually it is a register Rm or a constant

This instruction is useful for setting initial values and transferring data between registers.

Syntax: <instruction>{<cond>}{S} Rd, N

MOV Move a 32-bit value into a register Rd =N
MVN move the NOT of the 32-bit value into a register Rd =~N
[ his example shows a simple move instruction. The MOV instruction takes the ¢
3.1 register r5 and copies them into register r7, In this case, taking the value 5, and overwriting
the value 8 In registor r7
PRE re o= 8
r7 = B
MOV r7, rs i 18t r7 = pf

POST

rS = §
r7 = 5

preceded by #.

1b. Explain the various syntax for barrel shifter data processing instruction of ARM?

MOV instruction where N is a simple register. But N can be more than just a register or immediate
value; it can also be a register Rm that has been preprocessed by the barrel shifter prior to being used
by a data processing instruction.

Data processing instructions are processed within the arithmetic logic unit (ALU).

MOV instruction where N is a simple register. But N can be more than just a register or immediate
value; it can also be a register Rm that has been preprocessed by the barrel shifter prior to being used
by a data processing instruction.

Data processing instructions are processed within the arithmetic logic unit (ALU).

To illustrate the barrel shifter we will take the example in Figure 3.1 and add a shift operation to
the move instruction example.

Register Rn enters the ALU without any preprocessing of registers. Figure 3.1 shows the data flow
between the ALU and the barrel shifter.

Page 3 of 16



=3
‘Z Rn = Rm
8 Z
E_ g Barrel shifter
B =
= £ Result N
=z

\ Arithmetic logic unit /

Rd

Figure 3.1 Barrel shifter and ALU.
Example 3.2
We apply a logical shift left (LSL) to register Rm before moving it to the destination register.
This is the same as applying the standard C language shift operator to the register. The
MOV instruction copies the shift operator result N into register Rd. N represents the result of the LSL
operation
PREr5=51r7=8

MOV r7, r5, LSL #2  ; let r7 = r5*4 = (r5<<2)

POST rS§ =« 5
r7 = 20
Mnemonic  Description Shift Resalt Shift amount v
LSt Jogical shift left aSLy  x<y -3 or s
LR logical shift right xLSRy  (umsignedix:> y #3201 &s
AR arithmetic right shift ~ xASRy  (sgmedix y 13200 Rs
R Totate right xRy ((ensignedix» 1)l (x<(32—y)) =13lorRs

Table3.3  Barrel shift operation syntax for data processing instructions.

N shift operations Syntax

[mmediste #Fimediate

Regster n

Logical shift left by immediate n, LSL #shift_im
Logcal shift left by register m, LSLRs

Logical shift right by immediste m, LSR #shift ime
Logical shift right with register n, LR Rs
Arithmetic shift night by mmmediate fn, ASR #shift im
Arithmetic shift nght by register Bn, ASE Rs

Rotate right by immediate &, ROR #shift im
Rotate right by register n, ROR Rs

o

This exsmple of a WS imstraction shifis register r] Jeft by one bit. This multiphies register
11 by 2 value 2. As you can see, the C fag & updated in the sy becamse the § suffix is
present in the instruction maemonic.

Exam

(&)
o [l!

ME  cpsr = rovift ISER
0 = E2000020)
rl = SE0000304
WS D, rl, LSL#]

MST  cpsr = szlvgiFt USER
r = Sxi0Ni0:03
rl = 30000304

Tahle 33 lists the syntax for the diffesent barrel shift operations available on data

processing instructions. Tee secoad operznd N can be an immediate constant precedad by
%, 2 register vaime o, or the value of Rw processed by a shift.

Page 4 of 16



2 a. Explain the syntax of arithmetic instructions to implement addition and subtraction of 32-bit signed and
unsigned values. Give examples for each instruction.

N
{ w Rn + N+ tarry
ol ;--v N
Nl = N L
2t vadoes Rl = N Mo ”'Irmr. 1ag)
R = fn — N—!{carey T1ag)
U8 [ AU EncT Twr 320t vahucs Nl - Nn

N the result of thee shifler operation. The syntax of shiftes operation is shown i Table 3.5,

ameLe  This simple subtract instruction subtracts a value stored in register r2 from a value stored
3.4 inregister rl. The result s stored in register

PRE rd = 0x00000000
rl = 0xC0000002
r2 = OxCOO0OOD)
S8 O, r1, r2

POST  r0 = Ox00000001

ameLE  This teverse subtract instroction (RSB} subtracts rl from the constant value =0, writing the
3.5 result 1o #0 You can use this instruction to negate numbets,

PRE 0 = Ox0O000000

ri = 0x00000077
RS&8 0, ri, #0 } Rd = Ox0) =~ rl
POST re = «rl = Oxfrffre1E9

amere  The SUBS instruction is useful for decrementing loop counters. In this example we subtract
3.6 the immediate value one from the value one stored in register 1. The result value zero is
written to register rl, The cpsr s updated with the ZC flags being set

PRE cpsr = nzovgift USER
rl = O0x00000001

SUBS rl, rl, #1

POST cpsr » nZCvqiFt USER
rl « Ox00000000

Using the Barrel Shifter with Arithmetic Instructions
» The wide range of second operand shifts available on arithmetic and logical instructions is a very
powerful feature of the ARM instruction set. Example 3.7 illustrates the use of the inline barrel
shifter with an arithmetic instruction. The instruction multiplies the value stored in register rl by
three.

AR pEATLE 1 e ey saasn.

Examrie Register v/ is first shifted one location to the left to give the value of twice rf. T'he ADD
37 instruction then adds the result of the barrel shift operation to register ri. Uhe final result
transferred into register r0 is equal to three times the value stored in register ri.

PRE r0 = Ox00000000
rl = 0x000000058

ADD rO. rl, rl, LSL ¥

POST r0O = 0x0000000f1
rl « 0Ox00000005

2b. Explain the syntax and usage of B, BL, BX and BLX instructions with necessary examples.
» A branch instruction changes the flow of execution or is used to call a routine

Page 5 of 16



Syntax: B{=cond»} label
BL{=cond>} label
BX (~cond=) Rm

BLX{~cand=)} label | Rm
B branch pc = label
BL branch with link pc = label
Ir=address of the next instruction after the Bl
BX branch exchange pe =R B Oxfffffffe, T=-Rm & 1
BLX branch exchange with link | pc = label, T=1
pc=Rm & Oxfffffffe, T=RAm & 1
{r=address of the next instruction after the BLX

The address label is stored in the instruction as o signed po-relative offset and must be
within approximately 32 MB of the branch instruction, 7 refors to the Thumb bit in the
cpsr. When instructions set 7, the ARM switches to TThumb state.

3a. Write an ARM assembly language code snippet to create an infinite loop.
Backward ADD rl, r2, #4

CMP rl1, #2

MOVEQ r5, r2

B Backward

ExampLeE This example shows a forward and backward branch. Because these loops are address
3.13  specific, we do not include the pre- and post-conditions. The forward branch skips three
instructions. The backward branch creates an infinite loop.

B forward

ADD rl, r2, #4

ADD r0, r6, #2

ADD 3, r7, #
forward

SUB rl, r2, #

backward
ADD rl, r2, #
SUB rl, r2, #4
ADD rd4, r6, r7
B backward
3 b . Write an assembly language code which uses BL instruction to call a subroutine to perform addition of

three data words stored in registers. Specify the return statement with in the body of subroutine.

mov rl,#0x32

mov r2,#0x20

mov r3,#0x16

BL addition; call subroutine addition
mov r5,r4,Isl #2

addition add r4,r1,r2
add r4,r4,r3
mov pc,Ir ‘return statement

Page 6 of 16



End; end of the code

ExanpLe The branch with lmk, or BL, instraction is simiar to the B instruction but overwrites the
3.14 link register Ir with a return address. It performs a subroutine call. This example shows
a simple fragment of code that branches to a subroutine using the BL instruction. To return

from a subroutine, you copy the link register to the pc.

BL ssbrostine ; braack io subroutine

Cup rl, £ ; compare rl with 5

WVEG rl, #0 ; iF (ri==3) then r1 =0
ssbroatine

<subroutine code>

uov pc, Ir ; reters by moving pc = Ir

4a. Explain with examples the different addressing modes available with single register transfer instructions.

» These instructions are used for moving a single data item in and out of a register.
» The datatypes supported are signed and unsigned words (32-bit), halfwords (16-bit), and bytes.

Syntaxs =LDR|STR={=<cond=}{A} Rd,addressing’
LODR{=cond=} S8 |H|%H Rd, addressing”
STR{=cond=)H R4, addressing?

LDl 1« -.|;I word Into o register ;“:I e '.'/.:.I.)n---/
STR | wsuve byte or word from n register | R - riem 32 faddress)
LORB. | fond byte into w rogister Rel =~ rricered laclolress]
STRB | save byte rom o register Rel —= o &[address]
(] fenaak fw o Tern | i |
} sTed | cave halfeoed into 2 " f ‘[
ORSH . Toad segnod byle tndn o regester 1
|
LOWEN ’ load sagmod halfwoed o » register
Tables 4.5 anst 3.7, 10 be presented is Sectiom 38,2, descritee the aufilressing' and addevssing

aymtax

Single-Register Load-Store Addressing Modes
* The ARM instruction set provides different modes for addressing memory. These modes
* incorporate one of the indexing methods: preindex with writeback, preindex, and postindex

Tabledd Indexmahods

Base adhdeess
bides nebad Dea regader Fuanple

Prendaxwihiwrishak mvembaw + i, o +affe LR o0, [rl,4])
Prenda aonbeesofe]  meapbond LR PO, [l 04)
Padindex ava Ay boe+efie LR oD, [rl) 04

Note: | st St the emdruction wedes the cacndelod addoens back oo the Sase adidivss ogroies

PRE ro » Ox00000000
rl -0 ag
mom32[Ox 000] = Ox01910101
mem3Z [Dx00009004) = Ox02020202

LR rO, [r1, #4]!
Preindesing with writeback:

POST(1) O = OxO2O0ZO0202
rl = OxDPOO900S

Page 7 of 16



LOR r0, [rl, #4]
Preindexing:

POST(2) r0 = Ox0D2020202

rl = Ox0000900(
LOR ro, [r1], #4
Postindexing:

POST(3) r0 = 0x01010101
rl = Ox00009004

Table 3.5  Single-register load-store addressing, word or unsigned byte

Addressing” mode and index method Addressing' synta

ith {mmediate o

Preusde

[hn, offse 712]
Preindex with register offset {Rn, +/-Rn)
Preindex with scaled register offset [An, +/-Bmn, shift #shift 1mm)
Preindex wrsteback with immedate offses [Rn, #+/-0ffset_12])
Preindex writeback with register offsel [RAn, +/-R
Preindex writeback with scaled register offset [Rn, +/«Rn, shift #shift imn]|
ITmmediate postindexed [Rn], #+/-0ffset_12 =
Register postindex [Rn], +/-An
Scaled register postindex [Rn]), 4/=Rn, shift 2shift_imm

4b.Given: mem32[0x80018] = 0x03, mem32[0x80014] = 0x02, mem32[0x80010] = 0Ox01, r0
0x00080010, r1 = 0x00000000 ,r2 = 0x00000000, r3 = 0x00000000, r4= 0x000800C

Show the values updated after execution of
e LDMIATO!, {r1-r3}
e STMDB r4! {r1-r3}

Solution:

1) PRE

r0 = 0x00080010, r1 = 0x00000000 ,r2 = 0x00000000, r3 = 0x00000000
mem32[0x80018] = 0x03, mem32[0x80014] = 0x02, mem32[0x80010] = 0x01
LDMIA r0!, {r1-r3}

POST

rl = 0x01, r2 = 0x02, r3 = 0x03
r0 = 0x0008001C

2) PRE

rl = 0x01, r2 = 0x02, r3 = 0x03
r4= 0x0000800C

STMDB r4!,{r1-r3}

POST

Page 8 of 16



mem32 [0x8008] = 0x03, mem32 [0x8004] = 0x02, mem32 [0x8000] = 0x01
r4= 0x00008000
rl = 0x01, r2 = 0x02, r3 = 0x03

Memory Adress | content

0x00008010 | -------

0x0000800C | -------

0x00008008 0x03

0x00008004 0x02

0x00008000 0x01

mem3zZ [0xB0010] - 0x01
YO = Ox00080010
1l = Ox00000000
2 = Ox00000000
3 = Ox00000000

LOMIA Ol ., {rl-v3}
POST rO « Ox0008001c

rl = O0Ox00000001

2 = 0Ox00000002

3 o= 0x00000003

R DTTERREY

Aubbivin grstimter  sefalress  Dmdie
UEBHORY| Ox00060008
W | O=0000G000

LUaVOoGooOuoa ed OxO00000000

T OOBBOOUY | «2 = 0xD0000000
O= 00560001 24 Ox 00000000
= DOGOOO 00

o N0 e

Pre-condition for LOMIA instruction

Muemary
Addross podmitor mddress  Data

Ox: 2 OxODDDOOON
) DS e - € | Ox000060604
OxGODD00003 ] r# = Ox00000003
Ox 14 | OxQODOO0DZ | ¢2 « Dx00000002
OxB600560T ] 7 = 000000001
OxODDDOGO0

Post-conditian tor LOMIA (nstroction

Memory

Address pomter  address  Data
Dx80020 | 0x00000005
o) = Ox8001¢ —» | Dx8003¢ | 0x00000004 | 77 = 0x00000004

18| 0x00000003 | 72 = 0x00000003
(xB0014 | 0x00Q00002 | 1 = 0x00000002
0x0D0000001
DxB000c | 0xD0O00000

Post-condition for LOMIB instruction.

Page 9 of 16



5 (a) Explain the STACK operations in ARM7. Describe different addressing methods for stack
operations.

The ARM architecture uses the load-store multiple instructions to carry out stack operations. The pop
operation (removing data from a stack) uses a load multiple instruction; similarly, the push operation
(placing data onto the stack) uses a store multiple instruction. When using a stack you have to decide
whether the stack will grow up or down in memory. A stack is either ascending (A) or descending (D).
Ascending stacks grow towards higher memory addresses; in contrast, descending stacks grow towards
lower memory addresses.

When you use a full stack (F), the stack pointer sp points to an address that is the last used or full location
(i.e., sp points to the last item on the stack). In contrast, if you use an empty stack (E) the sp points to an
address that is the first unused or empty location (i.e., it points after the last item on the stack). There are a
number of load-store multiple addressing mode aliases available to support stack operations (see Table
3.11). Next to the pop column is the actual load multiple instruction equivalent. For example, a full
ascending stack would have the notation FA appended to the load multiple instruction—LDMFA. This
would be translated into an LDMDA instruction. ARMhas specified an ARM-Thumb Procedure Call
Standard (ATPCS) that defines how routines are called and how registers are allocated. In the ATPCS,
stacks are defined as being full descending stacks. Thus, the LDMFD and STMFD instructions provide the
pop and push functions, respectively.

Addressing methods for stack operations:

Addressing mode Description Pop = LDM Push =STM
FA full ascending LDMFA LOMDA STMFA STMIB
FD full descending LDMFD LOMIA STMFD STMDB
EA empty ascending LDMEA LOMDE STMEA STMIA
ED empty descending LDMED LDMIB STMED STMDA

PRE r1 = 0x00000002

r4 = 0x00000003

sp = 0x00080010

STMED sp!, {r1,r4}

POST rl1 = 0x00000002

r4 = 0x00000003

sp = 0x00080008
(b)Explain SWP instruction. Describe any one use of SWP instruction with necessary code snippet.
The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with the
contents of a register. This instruction is an atomic operation—it reads and writes a location in the same bus
operation, preventing any other instruction from reading or writing to that location until it completes.

Syntax: SWP{B}{<cond>} Rd,Rm,[Rn]

Page 10 of 16



SWP | swap aword between memory and a register | tmp=mem32[Rn|

mem32{Rn]=Rm

Rd=tmp

SWPB | swap a byte between memory and a register | tmp=niem8[Rn|
mem8[Rn] = Rm
Rd=tmp

PRE mem32[0x9000] = 0x12345678
r0 = 0x00000000
rl =0x11112222
r2 = 0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222
r0 = 0x12345678
rl =0x11112222
r2 = 0x00009000

Swap cannot be interrupted by any other instruction or any other bus access. We say the system “holds the
bus” until the transaction is complete.

6 (a) What is SWI? Explain with proper syntax and an example.

A software interrupt instruction (SWI) causes a software interrupt exception, which provides a mechanism
for applications to call operating system routines.

Syntax: SWI{<cond>} SWI_number

SWI | software interrupt | Ir_svc—=address of instruction following the SWI
Spsr_svc = cpsr

pc=vectors+ 0x8

cpsr mode = SVC

cpsr I=1 (mask IRQ interrupts)

When the processor executes an SWI instruction, it sets the program counter pc to the offset 0x8 in the
vector table. The instruction also forces the processor mode to SVC, which allows an operating system
routine to be called in a privileged mode. Each SWI instruction has an associated SWI number, which is
used to represent a particular function call or feature.

PRE cpsr = nzcVqift USER

pc = 0x00008000

Ir = OX003fffff; Ir = rl14

ro = 0x12

0x00008000 SWI 0x123456

POST cpsr = nzcVqlft_SVC
spsr = nzcVqift USER

Page 11 of 16



pc = 0x00000008
Ir = 0x00008004
ro = 0x12

(b) Demonstrate all Program Status Register Instructions with proper syntax formats.

The ARM instruction set provides two instructions to directly control a program status register (psr). The
MRS instruction transfers the contents of either the cpsr or spsr into a register; in the reverse direction, the
MSR instruction transfers the contents of a register into the cpsr or spsr. Together these instructions are used
to read and write the cpsr and spsr. In the syntax you can see a label called fields. This can be any
combination of control (c), extension (x), status (s), and flags (f ). These fields relate to particular byte
regions in a psr, as shown in Figure.

Syntax: MRS{<cond>} Rd,<cpsr|spsr>
MSR{<cond>} <cpsr|spsr>_<fields>,Rm
MSR{<cond>} <cpsr|spsr>_<fields>#immediate

MRS | copy program status register to a general-purpose register Rd= psr

MSR | move a general-purpose register to a program status register | psr(field/= Rm

MSR | move an immediate value to a program status register psr(field | = immediate

The c field controls the interrupt masks, Thumb state, and processor mode. Example shows how to enable
IRQ interrupts by clearing the I mask. This operation involves using both the MRS and MSR instructions to
read from and then write to the cpsr.

PRE cpsr = nzcvglFt_SVC

MRS r1, cpsr
BIC r1, r1, #0x80 ; 0b01000000
MSR cpsr_c, rl

POST cpsr = nzcvgiFt_ SVC
7 (a) Explain different types of coprocessor instructions with their syntax.

Coprocessor instructions are used to extend the instruction set. A coprocessor can either provide additional
computation capability or be used to control the memory subsystem including caches and memory
management. The coprocessor instructions include data processing, register transfer, and memory transfer
instructions. We will provide only a short overview since these instructions are coprocessor specific. Note
that these instructions are only used by cores with a coprocessor.

Syntax: CDP{<cond>} cp, opcodel, Cd, Cn {, opcode2}

<MRC|MCR>{<cond>} cp, opcodel, Rd, Cn, Cm {, opcode2}
<LDCI|STC>{<cond>} cp, Cd, addressing

Page 12 of 16



CDP coprocessor data processing—operform an operation in a coprocessor

MRC MCR | coprocessor register transfer—move data to/from coprocessor registers

LDC STC | coprocessor memory transfer—Iload and store blocks of memory to/from a coprocessor

In the syntax of the coprocessor instructions, the cp field represents the coprocessor number between p0 and
pl15. The opcode fields describe the operation to take place on the coprocessor. The Cn, Cm, and Cd fields
describe registers within the coprocessor. The coprocessor operations and registers depend on the specific
coprocessor you are using. Coprocessor 15 (CP15) is reserved for system control purposes, such as memory
management, write buffer control, cache control, and identification registers.

(b) For the given set of Instructions write the post condition of CPSR register: Assume suitable data for cpsr.
PRE  cpsr=nzcvqlFt_svc

MRS r1, cpsr
BIC r1, r1, #0x80
MSR cpsr_c, rl
POST cpsr = nzcvqgiFt_SVC
8. Explain different types of functions provided by INT 10H and INT 21H.

BIOS INTERRUPT (INT 10H)

INT 10h Functions

One way to display text on the screen quickly is to use the BIOS interrupt 10h functions. See the INT 10h
function list elsewhere for a complete description of these functions. A brief list of the more useful functions
is given here:

Function 0 Set Video Mode

Function 2 Set Cursor Position

Function 6 Scroll Active Page Up

Function 9 Write Attribute/character at Current Cursor Position

INT 10h / AH = 0 - set video mode.

input:

AL = desired video mode.

these video modes are supported:

00h - text mode. 40x25. 16 colors. 8 pages.
03h - text mode. 80x25. 16 colors. 8 pages.

13h - graphical mode. 40x25. 256 colors. 320x200 pixels. 1 page.

Page 13 of 16



INT 10h / AH = 2 - set cursor position.

input:
DH = row.
DL = column.

BH = page number (0..7).

INT 10h / AH = 03h - get cursor position and size.

input:

BH = page number.

return:
DH = row.
DL = column.

CH = cursor start line.
CL = cursor bottom line

INT 10h / AH = 06h - scroll up window.

INT 10h / AH = 07h - scroll down window.

input:

AL = number of lines by which to scroll (00h = clear entire window).
BH = attribute used to write blank lines at bottom of window.

CH, CL = row, column of window's upper left corner.

DH, DL = row, column of window's lower right corner.

INT 10h / AH = 09h - write character and attribute at cursor position.

input:

AL = character to display.

Page 14 of 16



BH = page number.
BL = attribute.

CX = number of times to write character.

DOS INTERRUPT (INT 21H)

9 Write a program using INT 10H to:
(a) Change the video mode
(b) Display the letter “D” in 200H locations with attributes black on white blinking.

.MODEL SMALL

.DATA

MSG DB “CMRIT CSES$”

.CODE

MOV AX,@DATA

MOV DS,AX

;TO CLEAR THE SCREEN

MOV AH,06H ; SCROLL UP

MOV AL,00 ;CLEAR ENTIRE WINDOW

MOV BH,07 ; NORMAL ATTRIBUTE

MOV CX,0000H ; ROW NAND COLUMN OF TOP LEFT
MOV DX, 184FH; ROW AND COLUMN OF BOTTOM RIGHT
; TO SET CURSOR AT THE CENTRE

MOV AH,02; TO SET CURSOR

MOV BH,00; PAGE 0

MOV DL, 39; COLUMN

MOV DH, 12; ROW

MOV AH,4CH
INT 21H
END
10 Write an ALP that does the following:
(a) Clears the screen
(b) Set the cursor to the center of the screen

.MODEL SMALL

.CODE

Page 15 of 16



; To change to video mode monochrome

START:MOV AH, 00; SET VIDEO MODE

MOV AL, 07; GREY/MONOCHROME TEXT

INT 10H

; Subcode for display character is AH=09H, BL specifies the attribute, BH specifies the page number, AL
should contain the ascii value of the character to be displayed and CX contains the number of times the
character to be displayed

MOV AH,09H

MOV BL,00

MOV AL,44H ;CHARCTER “D”

MOV CX,200H

MOV BL,0F0H

INT 10H

MOV AH,4CH
INT 21H

END START

Page 16 of 16



