CMR

INSTITUTE OF USN
TECHNOLOGY
Improvement Test
Sub: | MP & MC Code: [15CS44
Date: | 30/05/2017 Duration: |90 mins Mi\fl?; 50 Sem: (IV | Branch: |CSE, ISE
Answer Any FIVE FULL Questions
OBE
Marks O RB
T
1 (a) Explain ARM7 move instructions with relevant examples indicating Pre [05] CO4 LI
and post execution conditions.
(b) Explain the various syntax for barrel shifter data processing instruction of [05]
ARM?
2 (a) Explain the syntax of arithmetic instructions to implement addition and [05] CO4 LI
subtraction of 32-bit signed and unsigned values. Give examples for each
instruction.
: . : . [05]
(b) Explain the syntax and usage of B, BL, BX and BLX instructions with
necessary examples.
3 (a) Write an ARM assembly language code snippet to create an infinite loop. [05] CO4 L3
(b) Write an assembly language code which uses BL instruction to call a [05]
subroutine to perform addition of three data words stored in registers.
Specify the return statement with in the body of subroutine.
4 (a) Explain with examples the different addressing modes available with [05] CO4 12
single register transfer instructions.
05
(b) Given: mem32[0x80018] = 0x03, mem32[0x80014] = 0x02, [05]
mem32[0x80010] = 0x01, r0 = 0x00080010, r1 = 0x00000000 ,r2 =
0x00000000, r3 = 0x00000000, r4= 0x000800C
Show the values updated after execution of
e LDMIA 10!, {r1-r3}
e STMDB r4!,{r1-r3}
5 (a) Explain the STACK operations in ARM7. Describe different addressing [05] CO4 LI
methods for stack operations.
05
(b) Explain SWP instruction. Describe any one use of SWP instruction with [°]
necessary code snippet.
6 (a) What is SWI? Explain with proper syntax and an example. [05] CO4 LI

(b) Demonstrate all Program Status Register Instructions with proper syntax
formats.

Page 1 of 17

7 (a) Explain different types of coprocessor instructions with their syntax. [05]

(b) For the given set of Instructions write the post condition of CPSR [05]

register: Assume suitable data for cpsr.PRE cpsr=nzcvqlFt _svc

MRS rl, cpsr
BIC rl, r1, #0x80
MSR cpsr_c, rl

8 Explain different types of functions provided by INT 10H and INT 21H. [10]

9 Write a program using INT 10H to: [10]
(a) Change the video mode
(b) Display the letter “D” in 200H locations with attributes black on white
blinking.
10 Write an ALP that does the following: [10]
(a) Clears the screen
(b) Set the cursor to the center of the screen

Page 2 of 17

CO4

CO4

CO2
CO2

CO2

L1

L2

L1

1 a. Explain ARM7 move instructions with relevant examples indicating Pre and post execution
conditions.

Move Instructions
* Move is the simplest ARM instruction. It copies N into a destination register Rd, where

N is a register or immediate value.

» This instruction is useful for setting initial values and transferring data between registers.

Syntax: <instruction={<cond>}{S} Rd, N

MOV Mowe a 32-bit value into a register Rd =N

MWN move the NOT of the 32-bit value into a register Rd =~N

rmrLe This example shows a simple move instruction. The MOV instruction takes the contents of
3.1 register r5 and copies them into register r7, in this case, taking the value 5, and overwriting
the value 8 in register r=.

PRE rs = 5

7 = B

MoV rF, r5 3 let 7 = r5
POST r5 5

i 5

Note: second operand N for all data processing instructions. Usually it is a register Rm or a constant
preceded by #.

1b. Explain the various syntax for barrel shifter data processing instruction of ARM?

* MOV instruction where N is a simple register. But N can be more than just a register or immediate
value; it can also be a register Rm that has been preprocessed by the barrel shifter prior to being used
by a data processing instruction.

* Data processing instructions are processed within the arithmetic logic unit (ALU).

* MOV instruction where N is a simple register. But N can be more than just a register or immediate
value; it can also be a register Rm that has been preprocessed by the barrel shifter prior to being used
by a data processing instruction.

* Data processing instructions are processed within the arithmetic logic unit (ALU).

* To illustrate the barrel shifter we will take the example in Figure 3.1 and add a shift operation to
the move instruction example.

* Register Rn enters the ALU without any preprocessing of registers. Figure 3.1 shows the data flow
between the ALU and the barrel shifter.

Page 3 of 17

'—_-\.-Ll

Z Rn = Rm

4 Z

ﬁlg Eé‘ Barrel shifter

= B

= ,E Result N
=

1

Arithmetic logic unit

Rd

Figure 3.1 Barrel shifter and ALU.

Example 3.2

We apply a logical shift left (LSL) to register Rm before moving it to the destination register.

This is the same as applying the standard C language shift operator to the register. The

MOV instruction copies the shift operator result N into register Rd. N represents the result of the LSL

operation
PREr5=517=8
MoV r7, r5, LSL #2 ; let r7 = r5%4 = (r5<<2)
POST r5 =5
r7 = 20
Mnemonic ~ Description Shift Result Shift amount y
LsL logical shift left aSLy xxy #0-31 or Rs
L5R logical shift right xLSRy (unsigned)x» y #1-320r Rs
ASR arithmetic right shift ~ xASRy (signed)x s y #1-32 0r Rs
ROR Totate right xRORy ((unsigned)x y) | (x & (32—3)) #1-31orRks

Table 3.3 Barrel shift operation syntax for data processing instructions.

N shift operations Syntax

Immediate #immediate
Register Rm
Logical shift left by immediate Rm, LSL #shift_imm
Logical shift left by register Rm, LSL Rs
Logical shift right by immediate Rm, LSR #shift_imm
Logical shift right with register Rm, LSR Rs
Arithmetic shift right by immediate Rm, ASR #shift_imm
Arithmetic shift right by register Rm, ASR Rs
Rotate right by immediate Rm, ROR #shift_imm
Rotate right by register Rm, ROR Rs

ExampLe This example of aMOVS instruction shifts register r1 left by one bit. This multiplies register
33 n by a value 2'. As you can see, the C flag is updated in the cpsr because the S suffix is
present in the instruction mnemonic.

PRE cpsr = nzcvgiFt_USER
0 = 0x00000000
rl = 0x80000004

MVS T, rl, LSL #1
POST cpsr = nzlvgiFt_USER
rl = 0x00000008
rl = (x80000004
Table 3.3 lists the syntax for the different barrel shift operations available on data

processing instructions. The second operand N can be an immediate constant preceded by
aregister value Rm, or the value of Rm processed by a shift.

Page 4 of 17

2 a. Explain the syntax of arithmetic instructions to implement addition and subtraction of 32-bit signed and
unsigned values. Give examples for each instruction.

Syntax: <instruction>{<cond=}{S} Rd, Rn, N

ADC | add two 32-bit values and carry Rd = Rn+ N+ carry

ADD | add two 32-bit values Rd =Rn+ N

RSB | reverse subtract of two 32-bit values Rd =N — Rn

RSC | reverse subtract with carry of two 32-bit values | Rd = N — Rn—!(carry flag)
SBC | subtract with carry of two 32-bit values Rd = Rn — N—!(carry flag)
SUB | subtract two 32-bit values Rd = Rn— N

Nis the result of the shifter operation. The syntax of shifter operation is shown in Table 3.3.

ampLE This simple subtract instruction subtracts a value stored in register 2 from a value stored
in register r1. The result is stored in register r0.

PRE r0 = 0x00000000
rl = 0x00000002
r2 = 0x00000001

SuB r0, rl, r2

POST r0 = 0x00000001

ampeLE This reverse subtract instruction (RSB) subtracts rlI from the constant value #0, writing the
3.5 result to r0. You can use this instruction to negate numbers.

PRE r0 = 0x00000000
rl = 0x00000077

RSB r0, rl, #0 3 Rd = 0x0 - rl

POST r0 = -rl1 = Oxffffffeg

ampeLE The SUBS instruction is useful for decrementing loop counters. In this example we subtract
3.6 the immediate value one from the value one stored in register r1. The result value zero is
written to register r1. The cpsris updated with the ZC flags being set.

PRE cpsr = nzcvgiFt_USER
rl = 0x00000001

SUBS ri1, r1, #1

POST cpsr = nZCvqiFt_USER
rl = 0x00000000

Using the Barrel Shifter with Arithmetic Instructions
* The wide range of second operand shifts available on arithmetic and logical instructions is a very
powerful feature of the ARM instruction set. Example 3.7 illustrates the use of the inline barrel
shifter with an arithmetic instruction. The instruction multiplies the value stored in register r1 by
three.

SuLrivaa 111 1ugmEonna 52 Uy uzzv.

ExameLE Register rl is first shifted one location to the left to give the value of twice ri1. The ADD
3.7 instruction then adds the result of the barrel shift operation to register r1. The final result
transferred into register r0 is equal to three times the value stored in register r1.

PRE r0 = 0x00000000

rl = 0x00000005

ADD r0. rl. rl, LSL [#1
POST r0 = 0x0000000f

rl = 0x00000005

2b. Explain the syntax and usage of B, BL, BX and BLX instructions with necessary examples.
* A branch instruction changes the flow of execution or is used to call a routine

Page 5 of 17

Syntax: B{=cond>} label
BL{<=cond=} label
BX {<=cond=} Rm
BLX{=cond=} label Rm

B branch pc=Llabel

BL branch with link pc=Label
Ir=address of the next instruction after the BL

BX branch exchange pc=RAm & Oxfffffffe, T=Rm & 1

BLX branch exchange with link | pc=Iabel, T=1
pc=Rm & Oxfffffffe, T=Rm & 1
Ir=address of the next instruction after the BLX

The address label is stored in the instruction as a signed pc-relative offset and must be
within approximately 32 MB of the branch instruction. T refers to the Thumb bit in the
cpsr. When instructions set T, the ARM switches to Thumb state.

3a. Write an ARM assembly language code snippet to create an infinite loop.
Backward ADD rl, 12, #4

CMPrl, #2

MOVEQ 15, 12

B Backward

ExampLE This example shows a forward and backward branch. Because these loops are address
3.13 specific, we do not include the pre- and post-conditions. The forward branch skips three
instructions. The backward branch creates an infinite loop.

B forward
ADD rl, r2, #4
ADD r0, rb, #2

ADD r3, r7, M
forward

SUB rl, r2, #4
backward

ADD rl, r2, #

SUB rl, r2, #4

ADD rd4, r6, v7

B backward

3 b . Write an assembly language code which uses BL instruction to call a subroutine to perform addition of
three data words stored in registers. Specify the return statement with in the body of subroutine.

mov rl,#0x32

mov r2,#0x20

mov r3,#0x16

BL addition; call subroutine addition
mov r5,r4,1sl #2

addition add r4,r1,r2
add r4,r4,r3
mov pc,lr ;return statement

Page 6 of 17

End; end of the code

4a. Explain with examples the different addressing modes available with single register transfer instructions.

* These instructions are used for moving a single data item in and out of a register.
* The datatypes supported are signed and unsigned words (32-bit), halfwords (16-bit), and bytes.

Syntax: <LDR|STR>{<cond>}{B} Rd,addressingl
LDR{<cond>}SB|H|SH Rd. addressing?
STR{<cond>}H Rd, addressing?

LDR load word into a register Rd <- mem32[address]
STR save byte or word from a register Rd -= mem32[address]
LDRB load byte into a register Rd <- memS[address]
STRB save byte from a register Rd -= mem8[faddress]

LORH | load halfivord into a register Rd <- meml6[address]

STRH | save halfword into a register Rd -> mem16[address]

LORSB | load signed byte into a register Rd <- SignExtend

(mems[address])

LORSH | load signed halfword into a register | Rd <- SignExtend
(mem16laddress])

Tables 3.5 and 3.7, to be presented is Section 3.3.2, describe the addressing' and addressing®
syntax.

Single-Register Load-Store Addressing Modes
* The ARM instruction set provides different modes for addressing memory. These modes
* incorporate one of the indexing methods: preindex with writeback, preindex, and postindex
Table34 Indexmethods.

Base address
Index method Data register Example
Preindexwith writeback mem[base + offset/ base+offier LOR 10, [r1,#4]!
Preindex mem{base + offet] notupdated LOR 10,[r1,#4]
Postindex mem|base] base +offier — LDR 10,[r1],#4

Note: ! indicates that the instruction vrites the calculated address back to the base address register.

PRE r0 = 0x00000000
rl = 0x00090000
mem32 [0x00009000] = 0x01010101
mem32 [0x00009004] = 0x02020202
LDR r0, [rl, #4]!

Preindexing with writeback:

POST(1) r0 = 0x02020202
rl = 0x00009004

LDR r0, [rl, #4]
Preindexing:

POST(2) r0 = 0x02020202
rl = 0x00009000

LDR r0, [rl], #4

Postindexing:
POST(3) r0 = 0x01010101
rl = 0x00009004

Page 7 of 17

Table 3.5 Single-register load-store addressing, word or unsigned byte.

Addressing' mode and index method Addressing' syntax

Preindex with immediate offset [Rn, #+/-offset 12]

Preindex with register offset [Rn, +/-Rm]

Preindex with scaled register offset [Rn, +/-Rm, shift #shift_imm]
Preindex writeback with immediate offset [Rn, #+/-offset 12]!

Preindex writeback with register offset [Rn, +/-Rm]!

Preindex writeback with scaled register offset [Rn, +/-Rm, shift #shift imm]!
Immediate postindexed [Rn], #+/-offset_12

Register postindex [Rn], +/-Rm

Scaled register postindex [Rn], +/-Rm, shift #shift_imm

4b.Given: mem32[0x80018] = 0x03, mem32[0x80014] = 0x02, mem32[0x80010] = 0x01, r0 =
0x00080010, r1 = 0x00000000 ,r2 = 0x00000000, r3 = 0x00000000, r4= 0x000800C

Show the values updated after execution of
e LDMIA 10!, {r1-r3}
e STMDB r4!,{r1-r3}

Solution:

1) PRE

r0 = 0x00080010, r1 = 0x00000000 ,r2 = 0x00000000, r3 = 0x00000000
mem32[0x80018] = 0x03, mem32[0x80014] = 0x02, mem32[0x80010] = 0x01
LDMIA 10!, {r1-r3}

POST
rl =0x01, r2 = 0x02, r3 = 0x03
r0 = 0x0008001C

2) PRE

rl =0x01, r2 = 0x02, r3 = 0x03
r4= 0x0000800C

STMDB r4!,{r1-13}
POST
mem32 [0x8008] = 0x03, mem32 [0x8004] = 0x02, mem32 [0x8000] = 0x01

r4= 0x00008000
rl = 0x01, r2 = 0x02, r3 = 0x03

Memory Adress | content

0x00008010 | —-—----

Page 8 of 17

0x0000800C | -------

0x00008008 0x03
0x00008004 0x02
0x00008000 0x01

5 (a) Explain the STACK operations in ARM7. Describe different addressing methods for stack
operations.

The ARM architecture uses the load-store multiple instructions to carry out stack operations. The pop
operation (removing data from a stack) uses a load multiple instruction; similarly, the push operation
(placing data onto the stack) uses a store multiple instruction. When using a stack you have to decide
whether the stack will grow up or down in memory. A stack is either ascending (A) or descending (D).
Ascending stacks grow towards higher memory addresses; in contrast, descending stacks grow towards
lower memory addresses.

When you use a full stack (F), the stack pointer sp points to an address that is the last used or full location
(i.e., sp points to the last item on the stack). In contrast, if you use an empty stack (E) the sp points to an
address that is the first unused or empty location (i.e., it points after the last item on the stack). There are a
number of load-store multiple addressing mode aliases available to support stack operations (see Table
3.11). Next to the pop column is the actual load multiple instruction equivalent. For example, a full
ascending stack would have the notation FA appended to the load multiple instruction—LDMFA. This
would be translated into an LDMDA instruction. ARMhas specified an ARM-Thumb Procedure Call
Standard (ATPCS) that defines how routines are called and how registers are allocated. In the ATPCS,
stacks are defined as being full descending stacks. Thus, the LDMFD and STMFD instructions provide the
pop and push functions, respectively.

Addressing methods for stack operations:

Addressing mode Description Pop = LDM Push =5TM
FA full ascending LDMFA LDMDA STMFA STMIB
FD full descending LOMFD LDMIA STMFD STMDB
EA empty ascending LOMEA LDMDB STMEA STMIA
ED empty descending LOMED LDMIB STMED STMDA

PRE r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080010

STMED sp!, {r1,r4}
POST r1 = 0x00000002

r4 = 0x00000003
sp = 0x00080008

Page 9 of 17

(b)Explain SWP instruction. Describe any one use of SWP instruction with necessary code snippet.
The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with the
contents of a register. This instruction is an atomic operation—it reads and writes a location in the same bus

operation, preventing any other instruction from reading or writing to that location until it completes.

Syntax: SWP{B}{<cond>} Rd,Rm,[Rn]

SWP | swap a word between memory and a register | tmp=mem32[Rn|
mem3I2[Rn]=Rm
Rd =tinp

SWPB | swap a byte between memory and a register | tmp = mem8[Rn]|
mem8[Rn! = Rm
Rd =tmp

PRE mem32[0x9000] = 0x12345678
r0 = 0x00000000
rl =0x11112222
r2 = 0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222
r0 = 0x12345678
rl =0x11112222
r2 = 0x00009000

Swap cannot be interrupted by any other instruction or any other bus access. We say the system “holds the
bus” until the transaction is complete.

6 (a) What is SWI? Explain with proper syntax and an example.

A software interrupt instruction (SWI) causes a software interrupt exception, which provides a mechanism
for applications to call operating system routines.

Syntax: SWI{<cond>} SWI_number

SWI | software interrupt | Ir_svc= address of instruction following the SWI
SREr_sve= L'_PSJ’

pc=vectors + 0x8

cpsr mode = SVC

cpsr I =1 (mask IRQ interrupts)

When the processor executes an SWI instruction, it sets the program counter pc to the offset 0x8 in the
vector table. The instruction also forces the processor mode to SVC, which allows an operating system
routine to be called in a privileged mode. Each SWI instruction has an associated SWI number, which is
used to represent a particular function call or feature.

PRE cpsr = nzcVqift USER

Page 10 of 17

pc = 0x00008000
Ir = Ox003fffft; Ir = r14
r0 = 0x12

0x00008000 SWI 0x123456

POST cpsr = nzcVqlft SVC
spsr = nzcVqift USER
pc = 0x00000008
Ir = 0x00008004
r0 = 0x12

(b) Demonstrate all Program Status Register Instructions with proper syntax formats.

The ARM instruction set provides two instructions to directly control a program status register (psr»). The
MRS instruction transfers the contents of either the cpsr or spsr into a register; in the reverse direction, the
MSR instruction transfers the contents of a register into the cpsr or spsr. Together these instructions are used
to read and write the cpsr and spsr. In the syntax you can see a label called fields. This can be any
combination of control (c), extension (x), status (s), and flags (f). These fields relate to particular byte
regions in a psr, as shown in Figure.

Syntax: MRS{<cond>} Rd,<cpsr|spsr>
MSR{<cond>} <cpsr|spsr>_<fields>,Rm
MSR{<cond>} <cpsr|spsr>_<fields>,#immediate

MRS | copy program status register to a general-purpose register Rd=psr

M5R | move a general-purpose register to a program status register | psrffield] = Rm

MSR | move an immediate value to a program status register psrifield | = immediate

The ¢ field controls the interrupt masks, Thumb state, and processor mode. Example shows how to enable
IRQ interrupts by clearing the / mask. This operation involves using both the MRS and MSR instructions to
read from and then write to the cpsr.

PRE cpsr=nzcvqlFt SVC

MRS r1, cpsr

BIC r1, r1, #0x80 ; 0b01000000

MSR cpsr_c, rl

POST cpsr=nzcvqiFt SVC

7 (a) Explain different types of coprocessor instructions with their syntax.
Coprocessor instructions are used to extend the instruction set. A coprocessor can either provide additional
computation capability or be used to control the memory subsystem including caches and memory
management. The coprocessor instructions include data processing, register transfer, and memory transfer

instructions. We will provide only a short overview since these instructions are coprocessor specific. Note
that these instructions are only used by cores with a coprocessor.

Page 11 of 17

Syntax: CDP{<cond>} cp, opcodel, Cd, Cn {, opcode2}
<MRCMCR>{<cond>} cp, opcodel, Rd, Cn, Cm {, opcode2}
<LDC|STC>{<cond>} ¢cp, Cd, addressing

CDP coprocessor data processing—perform an operation in a COProcessor

MRC MCR | coprocessor register transfer—move data to/from coprocessor registers

LDC STC | coprocessor memory transfer—load and store blocks of memory to/from a coprocessor

In the syntax of the coprocessor instructions, the cp field represents the coprocessor number between p0 and
pl5. The opcode fields describe the operation to take place on the coprocessor. The Cn, Cm, and Cd fields
describe registers within the coprocessor. The coprocessor operations and registers depend on the specific
coprocessor you are using. Coprocessor 15 (CP15) is reserved for system control purposes, such as memory
management, write buffer control, cache control, and identification registers.

(b) For the given set of Instructions write the post condition of CPSR register: Assume suitable data for cpsr.
PRE cpsr=nzcvqlFt svc

MRS r1, cpsr

BIC 1, r1, #0x80

MSR cpsr_c, rl
POST cpsr = nzcvqiFt SVC

8. Explain different types of functions provided by INT 10H and INT 21H.

DOS Interrupt — INT 21H

Format: MOV AH, #°UCTION CODE

INT 2IH

Function Codes:

1. AH=01h-READ CHARACTER FROM STANDARD INPUT, WITH ECHO

Return: AL = character read

2. AH=02h -WRITE CHARACTER TO STANDARD OUTPUT
Entry: DL = character to write
Return: AL = last character output

3. AH=07h - DIRECT CHARACTER INPUT, WITHOUT ECHO

Return: AL = character read from standard input

Page 12 of 17

4. AH =09h - WRITE STRING TO STANDARD OUTPUT

Entry: DS: DX -> '$'-terminated string address

The string must be terminated by a '$' character. DS must point to the string's segment, and DX must contain
the string's offset

Return: AL = 24h

5. AH = 0Ah - BUFFERED INPUT

Entry: DS: DX -> buffer
Return: buffer filled with user input

Format of DOS input buffer:

Offset |Size |Description

00 1 maximum characters buffer can hold

01 1 number of chars from last input which may be recalled OR number of characters actually read,
excluding CR

02 n |actual characters read, including the final carriage return

6. AH=0Bh - GET STDIN STATUS

Return:

e AL = 00h if no character available
e AL = FFh if character is available

7. H=2Ah - GET SYSTEM DATE
Return: CX = year (1980-2099) DH = month DL = day AL = day of week (00h=Sunday)
8. AH=2Bh - SET SYSTEM DATE

Entry: CX = year (1980-2099) DH = month DL = day
Return:

e AL =00 successful
o FFh invalid date, system date unchanged

9. AH=2Ch - GET SYSTEM TIME

Return: CH = hour CL = minute DH = second DL = 1/100 seconds

Page 13 of 17

Note: on most systems, the resolution of the system clock is about 5/100sec, so returned times generally do
not increment by 1 on some systems, DL may always return 00h

SeeAlso: AH=2Ah,AH=2Dh,AH=E7h

10. AH = 2Dh - SET SYSTEM TIME

Entry: CH = hour CL = minute DH = second DL = 1/100 seconds
Return:

e AL = 00h successful
e FFhifinvalid time, system time unchanged

11. AH =4Ch - "EXIT" - TERMINATE WITH RETURN CODE

e Entry: AL = return code

o Return: never returns

o Notes: unless the process is its own parent, all open files are closed and all memory belonging to the
process is freed

BIOS INTERRUPT (INT 10H)

INT 10h Functions

One way to display text on the screen quickly is to use the BIOS interrupt 10h functions. See the INT 10h
function list elsewhere for a complete description of these functions. A brief list of the more useful functions
is given here:

Function 0 Set Video Mode

Function 2 Set Cursor Position

Function 6 Scroll Active Page Up

Function 9 Write Attribute/character at Current Cursor Position

INT 10h / AH = 0 - set video mode.

input:

AL = desired video mode.

these video modes are supported:

00h - text mode. 40x25. 16 colors. 8 pages.
03h - text mode. 80x25. 16 colors. 8 pages.

13h - graphical mode. 40x25. 256 colors. 320x200 pixels. 1 page.

Page 14 of 17

INT 10h / AH = 2 - set cursor position.

input:

DH = row.

DL = column.

BH = page number (0..7).

INT 10h / AH = 03h - get cursor position and size.

input:

BH = page number.
return:

DH = row.

DL = column.

CH = cursor start line.
CL = cursor bottom line

INT 10h / AH = 06h - scroll up window.

INT 10h / AH = 07h - scroll down window.

input:

AL = number of lines by which to scroll (00h = clear entire window).
BH = attribute used to write blank lines at bottom of window.

CH, CL = row, column of window's upper left corner.

DH, DL = row, column of window's lower right corner.

INT 10h / AH = 09h - write character and attribute at cursor position.

input:

AL = character to display.

Page 15 of 17

BH = page number.
BL = attribute.

CX = number of times to write character.

9 Write a program using INT 10H to:
(a) Change the video mode
(b) Display the letter “D” in 200H locations with attributes black on white blinking
MODEL SMALL
.CODE
; To change to video mode monochrome
START:MOV AH, 00; SET VIDEO MODE
MOV AL, 07; GREY/MONOCHROME TEXT
INT 10H
; Subcode for display character is AH=09H, BL specifies the attribute, BH specifies the page
number, AL should contain the ascii value of the character to be displayed and CX contains the
number of times the character to be displayed
MOV AH,09H
MOV BL,00
MOV AL,44H ;CHARCTER “D”
MOV CX,200H
MOV BL,0FOH

INT 10H

MOV AH,4CH
INT 21H

END START

Page 16 of 17

10 Write an ALP that does the following:
(a) Clears the screen
(b) Set the cursor to the center of the screen

MODEL SMALL

.CODE

MOV AX,@DATA

MOV DS,AX

-TO CLEAR THE SCREEN

MOV AH,06H ; SCROLL UP

MOV AL,00 ;CLEAR ENTIRE WINDOW

MOV BH,07 ; NORMAL ATTRIBUTE

MOV CX,0000H ; ROW NAND COLUMN OF TOP LEFT
MOV DX, 184FH; ROW AND COLUMN OF BOTTOM RIGHT
INT 10H

: TO SET CURSOR AT THE CENTRE

MOV AH,02; TO SET CURSOR

MOV BH,00; PAGE 0

MOV DL, 39; COLUMN

MOV DH, 12; ROW

INT 10H

MOV AH,4CH

INT 21H
END

Page 17 of 17

