
Page 1 of 17

CMR
INSTITUTE OF
TECHNOLOGY

USN

Improvement Test

Sub: MP & MC Code: 15CS44

Date: 30/ 05 / 2017 Duration: 90 mins
Max

Marks:
50 Sem: IV Branch: CSE, ISE

Answer Any FIVE FULL Questions

 Marks

OBE

CO RB
T

1 (a) Explain ARM7 move instructions with relevant examples indicating Pre
and post execution conditions.

(b) Explain the various syntax for barrel shifter data processing instruction of
ARM?

[05]

[05]

CO4 L1

2 (a) Explain the syntax of arithmetic instructions to implement addition and
subtraction of 32-bit signed and unsigned values. Give examples for each
instruction.

(b) Explain the syntax and usage of B, BL, BX and BLX instructions with
necessary examples.

[05]

 [05]

CO4 L1

3 (a) Write an ARM assembly language code snippet to create an infinite loop.

(b) Write an assembly language code which uses BL instruction to call a
subroutine to perform addition of three data words stored in registers.
Specify the return statement with in the body of subroutine.

[05]

[05]

CO4 L3

4 (a) Explain with examples the different addressing modes available with
single register transfer instructions.

(b) Given: mem32[0x80018] = 0x03, mem32[0x80014] = 0x02,
mem32[0x80010] = 0x01, r0 = 0x00080010, r1 = 0x00000000 ,r2 =
0x00000000, r3 = 0x00000000, r4= 0x000800C

Show the values updated after execution of
 LDMIA r0!, {r1-r3}

 STMDB r4!,{r1-r3}

[05]

[05]

CO4 L2

5 (a) Explain the STACK operations in ARM7. Describe different addressing
methods for stack operations.

(b) Explain SWP instruction. Describe any one use of SWP instruction with
necessary code snippet.

[05]

[05]

CO4 L1

6 (a) What is SWI? Explain with proper syntax and an example.

(b) Demonstrate all Program Status Register Instructions with proper syntax
formats.

[05]
[05]

CO4 L1

Page 2 of 17

7 (a) Explain different types of coprocessor instructions with their syntax.

(b) For the given set of Instructions write the post condition of CPSR
register: Assume suitable data for cpsr.PRE cpsr=nzcvqIFt_svc

MRS r1, cpsr
BIC r1, r1, #0x80
MSR cpsr_c, r1

[05]

[05]

CO4

CO4

L1

L2

8 Explain different types of functions provided by INT 10H and INT 21H. [10] CO2 L1

9 Write a program using INT 10H to:
(a) Change the video mode
(b) Display the letter “D” in 200H locations with attributes black on white

blinking.

[10] CO2 L3

10 Write an ALP that does the following:
(a) Clears the screen
(b) Set the cursor to the center of the screen

[10] CO2 L3

Page 3 of 17

1 a. Explain ARM7 move instructions with relevant examples indicating Pre and post execution
conditions.

 Move Instructions

• Move is the simplest ARM instruction. It copies N into a destination register Rd, where

 N is a register or immediate value.

• This instruction is useful for setting initial values and transferring data between registers.

Note: second operand N for all data processing instructions. Usually it is a register Rm or a constant
preceded by #.

1b. Explain the various syntax for barrel shifter data processing instruction of ARM?

• MOV instruction where N is a simple register. But N can be more than just a register or immediate
value; it can also be a register Rm that has been preprocessed by the barrel shifter prior to being used
by a data processing instruction.

• Data processing instructions are processed within the arithmetic logic unit (ALU).

• MOV instruction where N is a simple register. But N can be more than just a register or immediate
value; it can also be a register Rm that has been preprocessed by the barrel shifter prior to being used
by a data processing instruction.

• Data processing instructions are processed within the arithmetic logic unit (ALU).

• To illustrate the barrel shifter we will take the example in Figure 3.1 and add a shift operation to
the move instruction example.

• Register Rn enters the ALU without any preprocessing of registers. Figure 3.1 shows the data flow
between the ALU and the barrel shifter.

Page 4 of 17

Example 3.2
We apply a logical shift left (LSL) to register Rm before moving it to the destination register.
This is the same as applying the standard C language shift operator to the register. The
MOV instruction copies the shift operator result N into register Rd. N represents the result of the LSL
operation
PRE r5 = 5 r7 = 8

Page 5 of 17

2 a. Explain the syntax of arithmetic instructions to implement addition and subtraction of 32-bit signed and
unsigned values. Give examples for each instruction.

Using the Barrel Shifter with Arithmetic Instructions

• The wide range of second operand shifts available on arithmetic and logical instructions is a very
powerful feature of the ARM instruction set. Example 3.7 illustrates the use of the inline barrel
shifter with an arithmetic instruction. The instruction multiplies the value stored in register r1 by
three.

2b. Explain the syntax and usage of B, BL, BX and BLX instructions with necessary examples.

• A branch instruction changes the flow of execution or is used to call a routine

Page 6 of 17

3a. Write an ARM assembly language code snippet to create an infinite loop.

Backward ADD r1, r2, #4

 CMP r1, #2

 MOVEQ r5, r2

 B Backward

3 b . Write an assembly language code which uses BL instruction to call a subroutine to perform addition of
three data words stored in registers. Specify the return statement with in the body of subroutine.

mov r1,#0x32
mov r2,#0x20
mov r3,#0x16
BL addition; call subroutine addition
mov r5,r4,lsl #2
.
.
.
.
.
.
.

addition add r4,r1,r2
 add r4,r4,r3
 mov pc,lr ;return statement

Page 7 of 17

 End; end of the code

4a. Explain with examples the different addressing modes available with single register transfer instructions.

• These instructions are used for moving a single data item in and out of a register.
• The datatypes supported are signed and unsigned words (32-bit), halfwords (16-bit), and bytes.

Single-Register Load-Store Addressing Modes

• The ARM instruction set provides different modes for addressing memory. These modes
• incorporate one of the indexing methods: preindex with writeback, preindex, and postindex

Page 8 of 17

4b.Given: mem32[0x80018] = 0x03, mem32[0x80014] = 0x02, mem32[0x80010] = 0x01, r0 =
0x00080010, r1 = 0x00000000 ,r2 = 0x00000000, r3 = 0x00000000, r4= 0x000800C

Show the values updated after execution of
 LDMIA r0!, {r1-r3}
 STMDB r4!,{r1-r3}

Solution:

1) PRE
 r0 = 0x00080010, r1 = 0x00000000 ,r2 = 0x00000000, r3 = 0x00000000
mem32[0x80018] = 0x03, mem32[0x80014] = 0x02, mem32[0x80010] = 0x01
LDMIA r0!, {r1-r3}

POST
r1 = 0x01, r2 = 0x02, r3 = 0x03
r0 = 0x0008001C

2) PRE
r1 = 0x01, r2 = 0x02, r3 = 0x03
r4= 0x0000800C

STMDB r4!,{r1-r3}

POST

mem32 [0x8008] = 0x03, mem32 [0x8004] = 0x02, mem32 [0x8000] = 0x01
r4= 0x00008000
r1 = 0x01, r2 = 0x02, r3 = 0x03

Memory Adress

content

0x00008010 -------

Page 9 of 17

0x0000800C -------

0x00008008 0x03

0x00008004 0x02

0x00008000 0x01

5 (a) Explain the STACK operations in ARM7. Describe different addressing methods for stack

operations.

The ARM architecture uses the load-store multiple instructions to carry out stack operations. The pop
operation (removing data from a stack) uses a load multiple instruction; similarly, the push operation
(placing data onto the stack) uses a store multiple instruction. When using a stack you have to decide
whether the stack will grow up or down in memory. A stack is either ascending (A) or descending (D).
Ascending stacks grow towards higher memory addresses; in contrast, descending stacks grow towards
lower memory addresses.

When you use a full stack (F), the stack pointer sp points to an address that is the last used or full location
(i.e., sp points to the last item on the stack). In contrast, if you use an empty stack (E) the sp points to an
address that is the first unused or empty location (i.e., it points after the last item on the stack). There are a
number of load-store multiple addressing mode aliases available to support stack operations (see Table
3.11). Next to the pop column is the actual load multiple instruction equivalent. For example, a full
ascending stack would have the notation FA appended to the load multiple instruction—LDMFA. This
would be translated into an LDMDA instruction. ARMhas specified an ARM-Thumb Procedure Call
Standard (ATPCS) that defines how routines are called and how registers are allocated. In the ATPCS,
stacks are defined as being full descending stacks. Thus, the LDMFD and STMFD instructions provide the
pop and push functions, respectively.

Addressing methods for stack operations:

PRE r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080010

STMED sp!, {r1,r4}

POST r1 = 0x00000002
r4 = 0x00000003
sp = 0x00080008

Page 10 of 17

(b)Explain SWP instruction. Describe any one use of SWP instruction with necessary code snippet.

The swap instruction is a special case of a load-store instruction. It swaps the contents of memory with the
contents of a register. This instruction is an atomic operation—it reads and writes a location in the same bus
operation, preventing any other instruction from reading or writing to that location until it completes.

Syntax: SWP{B}{<cond>} Rd,Rm,[Rn]

PRE mem32[0x9000] = 0x12345678
r0 = 0x00000000
r1 = 0x11112222
r2 = 0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222

r0 = 0x12345678
r1 = 0x11112222
r2 = 0x00009000

Swap cannot be interrupted by any other instruction or any other bus access. We say the system “holds the
bus” until the transaction is complete.

6 (a) What is SWI? Explain with proper syntax and an example.

A software interrupt instruction (SWI) causes a software interrupt exception, which provides a mechanism
for applications to call operating system routines.

Syntax: SWI{<cond>} SWI_number

When the processor executes an SWI instruction, it sets the program counter pc to the offset 0x8 in the
vector table. The instruction also forces the processor mode to SVC, which allows an operating system
routine to be called in a privileged mode. Each SWI instruction has an associated SWI number, which is
used to represent a particular function call or feature.

PRE cpsr = nzcVqift_USER

Page 11 of 17

pc = 0x00008000
lr = 0x003fffff; lr = r14
r0 = 0x12

0x00008000 SWI 0x123456

POST cpsr = nzcVqIft_SVC
spsr = nzcVqift_USER
pc = 0x00000008
lr = 0x00008004

 r0 = 0x12

(b) Demonstrate all Program Status Register Instructions with proper syntax formats.

The ARM instruction set provides two instructions to directly control a program status register (psr). The
MRS instruction transfers the contents of either the cpsr or spsr into a register; in the reverse direction, the
MSR instruction transfers the contents of a register into the cpsr or spsr. Together these instructions are used
to read and write the cpsr and spsr. In the syntax you can see a label called fields. This can be any
combination of control (c), extension (x), status (s), and flags (f). These fields relate to particular byte
regions in a psr, as shown in Figure.

Syntax: MRS{<cond>} Rd,<cpsr|spsr>
MSR{<cond>} <cpsr|spsr>_<fields>,Rm
MSR{<cond>} <cpsr|spsr>_<fields>,#immediate

The c field controls the interrupt masks, Thumb state, and processor mode. Example shows how to enable
IRQ interrupts by clearing the I mask. This operation involves using both the MRS and MSR instructions to
read from and then write to the cpsr.

PRE cpsr = nzcvqIFt_SVC

MRS r1, cpsr
BIC r1, r1, #0x80 ; 0b01000000
MSR cpsr_c, r1

 POST cpsr = nzcvqiFt_SVC

7 (a) Explain different types of coprocessor instructions with their syntax.

Coprocessor instructions are used to extend the instruction set. A coprocessor can either provide additional
computation capability or be used to control the memory subsystem including caches and memory
management. The coprocessor instructions include data processing, register transfer, and memory transfer
instructions. We will provide only a short overview since these instructions are coprocessor specific. Note
that these instructions are only used by cores with a coprocessor.

Page 12 of 17

Syntax: CDP{<cond>} cp, opcode1, Cd, Cn {, opcode2}
<MRC|MCR>{<cond>} cp, opcode1, Rd, Cn, Cm {, opcode2}
<LDC|STC>{<cond>} cp, Cd, addressing

In the syntax of the coprocessor instructions, the cp field represents the coprocessor number between p0 and
p15. The opcode fields describe the operation to take place on the coprocessor. The Cn, Cm, and Cd fields
describe registers within the coprocessor. The coprocessor operations and registers depend on the specific
coprocessor you are using. Coprocessor 15 (CP15) is reserved for system control purposes, such as memory
management, write buffer control, cache control, and identification registers.

(b) For the given set of Instructions write the post condition of CPSR register: Assume suitable data for cpsr.
PRE cpsr=nzcvqIFt_svc

 MRS r1, cpsr
 BIC r1, r1, #0x80
 MSR cpsr_c, r1

POST cpsr = nzcvqiFt_SVC

8. Explain different types of functions provided by INT 10H and INT 21H.

DOS Interrupt – INT 21H

Format: MOV AH, #FUCTION CODE

 INT 21H

Function Codes:

1. AH = 01h - READ CHARACTER FROM STANDARD INPUT, WITH ECHO

Return: AL = character read

2. AH = 02h -WRITE CHARACTER TO STANDARD OUTPUT
Entry: DL = character to write
Return: AL = last character output

3. AH=07h - DIRECT CHARACTER INPUT, WITHOUT ECHO

Return: AL = character read from standard input

Page 13 of 17

4. AH = 09h - WRITE STRING TO STANDARD OUTPUT

Entry: DS: DX -> '$'-terminated string address

The string must be terminated by a '$' character. DS must point to the string's segment, and DX must contain
the string's offset

Return: AL = 24h

5. AH = 0Ah - BUFFERED INPUT

Entry: DS: DX -> buffer

Return: buffer filled with user input

Format of DOS input buffer:

Offset Size Description

00 1 maximum characters buffer can hold

01 1
number of chars from last input which may be recalled OR number of characters actually read,
excluding CR

02 n actual characters read, including the final carriage return

6. AH=0Bh - GET STDIN STATUS

Return:

 AL = 00h if no character available
 AL = FFh if character is available

7. H = 2Ah - GET SYSTEM DATE
 Return: CX = year (1980-2099) DH = month DL = day AL = day of week (00h=Sunday)
8. AH = 2Bh - SET SYSTEM DATE

Entry: CX = year (1980-2099) DH = month DL = day

Return:

 AL = 00 successful
 FFh invalid date, system date unchanged

9. AH = 2Ch - GET SYSTEM TIME

Return: CH = hour CL = minute DH = second DL = 1/100 seconds

Page 14 of 17

Note: on most systems, the resolution of the system clock is about 5/100sec, so returned times generally do
not increment by 1 on some systems, DL may always return 00h

SeeAlso: AH=2Ah,AH=2Dh,AH=E7h

10. AH = 2Dh - SET SYSTEM TIME

Entry: CH = hour CL = minute DH = second DL = 1/100 seconds

Return:

 AL = 00h successful
 FFh if invalid time, system time unchanged

11. AH = 4Ch - "EXIT" - TERMINATE WITH RETURN CODE
 Entry: AL = return code
 Return: never returns
 Notes: unless the process is its own parent, all open files are closed and all memory belonging to the

process is freed

BIOS INTERRUPT (INT 10H)

INT 10h Functions

One way to display text on the screen quickly is to use the BIOS interrupt 10h functions. See the INT 10h
function list elsewhere for a complete description of these functions. A brief list of the more useful functions
is given here:

Function 0 Set Video Mode

Function 2 Set Cursor Position

Function 6 Scroll Active Page Up

Function 9 Write Attribute/character at Current Cursor Position

INT 10h / AH = 0 - set video mode.

input:

AL = desired video mode.

these video modes are supported:

00h - text mode. 40x25. 16 colors. 8 pages.

03h - text mode. 80x25. 16 colors. 8 pages.

13h - graphical mode. 40x25. 256 colors. 320x200 pixels. 1 page.

Page 15 of 17

INT 10h / AH = 2 - set cursor position.

input:

DH = row.

DL = column.

BH = page number (0..7).

INT 10h / AH = 03h - get cursor position and size.

input:

BH = page number.

return:

DH = row.

DL = column.

CH = cursor start line.

CL = cursor bottom line

INT 10h / AH = 06h - scroll up window.

INT 10h / AH = 07h - scroll down window.

input:

AL = number of lines by which to scroll (00h = clear entire window).

BH = attribute used to write blank lines at bottom of window.

CH, CL = row, column of window's upper left corner.

DH, DL = row, column of window's lower right corner.

INT 10h / AH = 09h - write character and attribute at cursor position.

input:

AL = character to display.

Page 16 of 17

BH = page number.

BL = attribute.

CX = number of times to write character.

9 Write a program using INT 10H to:

(a) Change the video mode
(b) Display the letter “D” in 200H locations with attributes black on white blinking

MODEL SMALL

.CODE

; To change to video mode monochrome

START:MOV AH, 00; SET VIDEO MODE

MOV AL, 07; GREY/MONOCHROME TEXT

INT 10H

; Subcode for display character is AH=09H, BL specifies the attribute, BH specifies the page
number, AL should contain the ascii value of the character to be displayed and CX contains the
number of times the character to be displayed

MOV AH,09H

MOV BL,00

MOV AL,44H ;CHARCTER “D”

MOV CX,200H

MOV BL,0F0H

INT 10H

MOV AH,4CH
INT 21H

END START

Page 17 of 17

10 Write an ALP that does the following:

(a) Clears the screen
(b) Set the cursor to the center of the screen

.MODEL SMALL
.CODE
MOV AX,@DATA
MOV DS,AX
;TO CLEAR THE SCREEN
MOV AH,06H ; SCROLL UP
MOV AL,00 ;CLEAR ENTIRE WINDOW
MOV BH,07 ; NORMAL ATTRIBUTE
MOV CX,0000H ; ROW NAND COLUMN OF TOP LEFT
MOV DX, 184FH; ROW AND COLUMN OF BOTTOM RIGHT
INT 10H
; TO SET CURSOR AT THE CENTRE
MOV AH,02; TO SET CURSOR
MOV BH,00; PAGE 0
MOV DL, 39; COLUMN
MOV DH, 12; ROW
INT 10H

MOV AH,4CH
INT 21H
END

