
Page 1 of 21

CMR
INSTITUTE OF
TECHNOLOGY USN

SCHEME AND SOLUTION

Internal Assesment Test – III
Sub: Object Oriented Concepts Code: 15CS45

Date: 30 / 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: 4(A,B) Branch: CSE

Answer FIVE FULL questions selecting AT LEAST TWO questions from each module

Marks
OBE Marks

Distribution
CO RBT

MODULE I

1. Give an example for using keyboard event. Write a Java program to
demonstrate the key event handler.

When a key is pressed, a KEY_PRESSED event is generated. This
results in a call to the keyPressed() event handler. When the key is released,
a KEY_RELEASED event is generated and the keyReleased() handler is
executed. If a character is generated by the keystroke, then a KEY_TYPED
event is sent and the keyTyped() handler is invoked.

The following program demonstrates keyboard input. It echoes
keystrokes to the applet window and shows the pressed/released status of
each key in the status window.

// Demonstrate the key event handlers.

import java.awt.*;
import java.awt.event.*;

[10] CO2 L3 Explanation: 5m
Program: 5m

Page 2 of 21

import java.applet.*;

/*
<applet code="SimpleKey" width=300 height=100>
</applet>
*/

public class SimpleKey extends Applet
implements KeyListener {
String msg = "";
int X = 10, Y = 20; // output coordinates
public void init() {
addKeyListener(this);
}

public void keyPressed(KeyEvent ke) {
showStatus("Key Down");
}

public void keyReleased(KeyEvent ke) {
showStatus("Key Up");
}

public void keyTyped(KeyEvent ke) {
msg += ke.getKeyChar();
repaint();
}

// Display keystrokes.
public void paint(Graphics g) {
g.drawString(msg, X, Y);
}
}

Sample output is shown here:

Page 3 of 21

2. Briefly explain the role of:

i) Event classes
ii) Event listener interfaces

Event classes

The Event classes represent the event. Java provides us various Event classes

The Event classes represent the event. Java provides us various Event classes but
we will discuss those which are more frequently used.

EventObject class

It is the root class from which all event state objects shall be derived. All Events
are constructed with a reference to the object, the source, that is logically
deemed to be the object upon which the Event in question initially occurred
upon.This class is defined in java.util package.

Class declaration

Following is the declaration for java.util.EventObject class:

public class EventObject
extends Object

implements Serializable

Field

Following are the fields for java.util.EventObject class:

 protected Object source -- The object on which the Event initially

[10] CO2 L2 Explanation: 5m
each

Page 4 of 21

occurred.

Class constructors
S.N. Constructor & Description

1
EventObject(Object source)

Constructs a prototypical Event.

Class methods
S.N. Method & Description

1
Object getSource()

The object on which the Event initially occurred.

2
String toString()

Returns a String representation of this EventObject.

Methods inherited

This class inherits methods from the following classes:

 java.lang.Object

AWT Event Classes:

Following is the list of commonly used event classes.

Sr.
No.

Control & Description

1

AWTEvent

It is the root event class for all AWT events. This class and its
subclasses supercede the original java.awt.Event class.

Page 5 of 21

2

ActionEvent

The ActionEvent is generated when button is clicked or the item of a
list is double clicked.

3

InputEvent

The InputEvent class is root event class for all component-level input
events.

4
KeyEvent

On entering the character the Key event is generated.

5
MouseEvent

This event indicates a mouse action occurred in a component.

6
TextEvent

The object of this class represents the text events.

7
WindowEvent

The object of this class represents the change in state of a window.

8

AdjustmentEvent

The object of this class represents the adjustment event emitted by
Adjustable objects.

9
ComponentEvent

The object of this class represents the change in state of a window.

10
ContainerEvent

The object of this class represents the change in state of a window.

11
MouseMotionEvent

The object of this class represents the change in state of a window.

Page 6 of 21

PaintEvent

The object of this class represents the change in state of a window.

Event Listener Interfaces
The delegation event model has two parts:
sources and listeners.
Listeners are created by implementing one or more of the interfaces

defined by the java.awt.event package.
When an event occurs, the event source invokes the appropriate method
defined by the listener and provides an event object as its argument.
Table below lists commonly used listener interfaces and provides a
brief description of the methods that they define.

Eg:
The ActionListener Interface
This interface defines the actionPerformed() method that is invoked
when an action event occurs. Its general form is shown here:
void actionPerformed(ActionEvent ae)

.

Page 7 of 21

3.Define the delegation event model, Briefly explain the role of:

i) Sources of event
ii) Adapter clauses

Sources of event

In Java, events are handled in terms of event sources and event listeners. An

[10] CO2 L2 Explanation: 5m
each

Page 8 of 21

event source is an object that produces an event, and an event listener is an
object that wants to be informed when an event occurs.

For example, a button is an event source, and an animation object might be an
event listener.

Table below lists some of the user interface components that can generate the events . In
addition to these graphical user interface elements, any class derived

ii. Adapter Classes

Page 9 of 21

Java provides a special feature, called an adapter class, that can simplify the
creation of event handlers in certain situations. An adapter class provides an
empty implementation of all methods in an event listener interface. Adapter
classes are useful when you want to receive and process only some of the events
that are handled by a particular event listener interface.One can define a new
class to act as an event listener by extending one of the adapter classes and
implementing only those events in which you are interested.
For example, the MouseMotionAdapter class has two methods,
mouseDragged()
and mouseMoved(), which are the methods defined by the
MouseMotionListener
interface. If you were interested in only mouse drag events, then you could
simply extend
MouseMotionAdapter and override mouseDragged(). The empty
implementation of
mouseMoved() would handle the mouse motion events.

4.a. Define the delegation event model,

The modern approach to handling events is based on the delegation
event model, which defines standard and consistent mechanisms to generate
and process events. Its concept is quite simple: a source generates an event
and sends it to one or more listeners. In this scheme, the listener simply waits
until it receives an event. Once an event is received, the listener processes the
event and then returns. The advantage of this design is that the application
logic that processes events is cleanly separated from the user interface logic
that generates those events. A user interface element is able to “delegate” the
processing of an event to a separate piece of code. In the delegation event
model, listeners must register with a source in order to receive an event
notification. This provides an important benefit: notifications are sent only to
listeners that want to receive them. This is a more efficient way to handle
events than the design used by the old Java 1.0 approach. Previously, an event
was propagated up the containment hierarchy until it was handled by a
component. This required components to receive events that they did not

[5] CO2 L1 Explanation: 5m

Page 10 of 21

process, and it wasted valuable time. The delegation event model eliminates
this overhead.
b. Define swing. Explain two features of it

Swing is a set of classes that provides more powerful and flexible
GUI components than does the AWT. Swing provides the look and feel of
the modern Java GUI.

The two key features of swing are:
1. Lightweight components and
2. A pluggable look and feel

1. Swing Components Are Lightweight

Swing components are lightweight. This means that they are written entirely
in Java and do not map directly to platform-specific peers. Because
lightweight components are rendered using graphics primitives, they can be
transparent, which enables nonrectangular shapes. Thus, lightweight
components are more efficient and more flexible. Furthermore, because
lightweight components do not translate into native peers, the look and feel
of each component is determined by Swing, not by the underlying operating
system. This means that each component will work in a consistent manner
across all platforms.

2. Swing Supports a Pluggable Look and Feel

Swing supports a pluggable look and feel (PLAF). Because each Swing
component is rendered by Java code rather than by native peers, the look
and feel of a component is under the control of Swing. This fact means that
it is possible to separate the look and feel of a component from the logic of
the component, and this is what Swing does. Separating out the look and
feel provides a significant advantage: it becomes possible to change the way
that a component is rendered without affecting any of its other aspects. In
other words, it is possible to “plug in” a new look and feel for any given
component without creating any side effects in the code that uses that
component. Moreover, it becomes possible to define entire sets of look-and-

[5] CO2 L2 Explanation: 5m

Page 11 of 21

feels that represent different GUI styles. To use a specific style, its look and
feel is simply “plugged in.” Once this is done, all components are
automatically rendered using that style.
Pluggable look-and-feels offer several important advantages. It is possible
to define a look and feel that is consistent across all platforms. Conversely, it is
possible to create a look. and feel that acts like a specific platform. For
example, if you know that an application will be running only in a Windows
environment, it is possible to specify the Windows look and feel. It is also
possible to design a custom look and feel. Finally, the look and feel can be
changed dynamically at run time.

Java SE 6 provides look-and-feels, such as metal and Motif, that are available to
all Swing users. The metal look and feel is also called the Java look and feel. It
is platform-independent and available in all Java execution environments. It is
also the default look and feel. Windows environments also have access to the
Windows and Windows Classic look and feel.

MODULE II

5.Explain the applet skeleton and write an example program for applet

// An Applet skeleton.
import java.awt.*;
import java.applet.*;

/*
<applet code="AppletSkel" width=300 height=100>
</applet>
*/

public class AppletSkel extends Applet {
// Called first.
public void init() {
// initialization
}

[10] CO2 L2 Explanation: 5m
Program: 5m

Page 12 of 21

/* Called second, after init(). Also called whenever the applet is
restarted. */

public void start() {
// start or resume execution
}

// Called when the applet is stopped.
public void stop() {
// suspends execution
}

/* Called when applet is terminated. This is the last method executed.
*/

public void destroy() {
// perform shutdown activities
}
// Called when an applet's window must be restored.
public void paint(Graphics g) {
// redisplay contents of window
}
}

Although this skeleton does not do anything, it can be compiled and
run. When run, it generates the following window when viewed with an
applet viewer:

Page 13 of 21

OR

/* A simple applet that sets the foreground and background colors and
outputs a string. */

import java.awt.*;
import java.applet.*;
/*
<applet code="Sample" width=300 height=50>
</applet>
*/

public class Sample extends Applet{
String msg;

// set the foreground and background colors.
public void init() {

Page 13 of 21

OR

/* A simple applet that sets the foreground and background colors and
outputs a string. */

import java.awt.*;
import java.applet.*;
/*
<applet code="Sample" width=300 height=50>
</applet>
*/

public class Sample extends Applet{
String msg;

// set the foreground and background colors.
public void init() {

Page 13 of 21

OR

/* A simple applet that sets the foreground and background colors and
outputs a string. */

import java.awt.*;
import java.applet.*;
/*
<applet code="Sample" width=300 height=50>
</applet>
*/

public class Sample extends Applet{
String msg;

// set the foreground and background colors.
public void init() {

Page 14 of 21

setBackground(Color.cyan);
setForeground(Color.red);
msg = "Inside init() --";
}

// Initialize the string to be displayed.
public void start() {
msg += " Inside start() --";
}

// Display msg in applet window.
public void paint(Graphics g) {
msg += " Inside paint().";
g.drawString(msg, 10, 30);
}
}

This applet generates the window shown here:

init()
The init() method is the first method to be called. This is where one

should initialize variables.
Page 14 of 21

setBackground(Color.cyan);
setForeground(Color.red);
msg = "Inside init() --";
}

// Initialize the string to be displayed.
public void start() {
msg += " Inside start() --";
}

// Display msg in applet window.
public void paint(Graphics g) {
msg += " Inside paint().";
g.drawString(msg, 10, 30);
}
}

This applet generates the window shown here:

init()
The init() method is the first method to be called. This is where one

should initialize variables.
Page 14 of 21

setBackground(Color.cyan);
setForeground(Color.red);
msg = "Inside init() --";
}

// Initialize the string to be displayed.
public void start() {
msg += " Inside start() --";
}

// Display msg in applet window.
public void paint(Graphics g) {
msg += " Inside paint().";
g.drawString(msg, 10, 30);
}
}

This applet generates the window shown here:

init()
The init() method is the first method to be called. This is where one

should initialize variables.

Page 15 of 21

This method is called only once during the run time of your applet.

start()
The start() method is called after init(). It is also called to restart an

applet after it has been stopped. Whereas init() is called once—the first
time an applet is loaded—start() is called each time an applet’s HTML
document is displayed onscreen. So, if a user leaves a web page and comes
back, the applet resumes execution at start ().

paint()
The paint () method is called each time your applet’s output must be

redrawn. This situation can occur for several reasons. For example, the
window in which the applet is running may be overwritten by another
window and then uncovered. Or the applet window may be minimized and
then restored. paint () is also called when the applet begins execution.
Whatever the cause, whenever the applet must redraw its output, paint () is
called.

The stop()
The stop() method is called when a web browser leaves the HTML

document containing the applet—when it goes to another page, for example.
When stop() is called, the applet is probably running. You should use stop(
) to suspend threads that don’t need to run when the applet is not visible.
You can restart them when start() is called if the user returns to the page.

destroy()
The destroy() method is called when the environment determines that

your applet needs to be removed completely from memory. At this point,
you should free up any resources the applet may be using. The stop()
method is always called before destroy().

Overriding update()
In some situations, your applet may need to override another method

defined by the AWT, called update(). This method is called when your
applet has requested that a portion of its window be redrawn. The default

Page 16 of 21

version of update() simply calls paint(). However, you can override the
update() method so that it performs more subtle repainting. In general,
overriding update() is a specialized technique that is not applicable to all
applets, and the examples in this book do not override update().

6.Write an applet program to scroll a text across applet window

A Simple Banner Applet

This applet scrolls a message, from right to left, across the applet’s
window. Since the scrolling of the message is a repetitive task, it is
performed by a separate thread, created by the applet when it is initialized.
The banner applet is shown here:

/* A simple banner applet. This applet creates a thread that scrolls
the message contained in msg right to left across the applet's window.
*/

import java.awt.*;
import java.applet.*;

/*
<applet code="SimpleBanner" width=300 height=50>
</applet>
*/

public class SimpleBanner extends Applet implements Runnable {
String msg = " A Simple Moving Banner.";
Thread t = null;
int state;
boolean stopFlag;

// Set colors and initialize thread.
public void init() {
setBackground(Color.cyan);
setForeground(Color.red);

[10] CO3 L3 Program: 10m

Page 17 of 21

}

// Start thread
public void start() {
t = new Thread(this);
stopFlag = false;
t.start();
}

// Entry point for the thread that runs the banner.
public void run() {
char ch;

// Display banner
for(; ;) {
try {
repaint();
Thread.sleep(250);
ch = msg.charAt(0);
msg = msg.substring(1, msg.length());
msg += ch;
if(stopFlag)
break;
} catch(InterruptedException e) {}
}
}

// Pause the banner.
public void stop() {
stopFlag = true;
t = null;
}

// Display the banner.
public void paint(Graphics g) {
g.drawString(msg, 50, 30);

Page 18 of 21

}
}

Following is sample output:

7.Create swing application having two buttons named alpha and beta.
When either of the buttons pressed, it should display “alpha pressed” and
“beta pressed” respectively.

Create swing application having two buttons named alpha
and beta. When either of the buttons pressed, it should
display “alpha pressed” and “beta pressed” respectively.

// Handle an event in a Swing program.

import java.awt.*;
import java.awt.event.*;

[10] CO3 L3 Program: 10m

Page 18 of 21

}
}

Following is sample output:

7.Create swing application having two buttons named alpha and beta.
When either of the buttons pressed, it should display “alpha pressed” and
“beta pressed” respectively.

Create swing application having two buttons named alpha
and beta. When either of the buttons pressed, it should
display “alpha pressed” and “beta pressed” respectively.

// Handle an event in a Swing program.

import java.awt.*;
import java.awt.event.*;

[10] CO3 L3 Program: 10m

Page 18 of 21

}
}

Following is sample output:

7.Create swing application having two buttons named alpha and beta.
When either of the buttons pressed, it should display “alpha pressed” and
“beta pressed” respectively.

Create swing application having two buttons named alpha
and beta. When either of the buttons pressed, it should
display “alpha pressed” and “beta pressed” respectively.

// Handle an event in a Swing program.

import java.awt.*;
import java.awt.event.*;

[10] CO3 L3 Program: 10m

Page 19 of 21

import javax.swing.*;

class EventDemo {
JLabel jlab;
EventDemo() {

// Create a new JFrame container.
JFrame jfrm = new JFrame("An Event Example");

// Specify FlowLayout for the layout manager.
jfrm.setLayout(new FlowLayout());

// Give the frame an initial size.
jfrm.setSize(220, 90);

// Terminate the program when the user closes the application.
jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// Make two buttons.
JButton jbtnAlpha = new JButton("Alpha");
JButton jbtnBeta = new JButton("Beta");

// Add action listener for Alpha.
jbtnAlpha.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
jlab.setText("Alpha was pressed.");
}
});

// Add action listener for Beta.
jbtnBeta.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
jlab.setText("Beta was pressed.");
}
});

Page 20 of 21

// Add the buttons to the content pane.
jfrm.add(jbtnAlpha);
jfrm.add(jbtnBeta);

// Create a text-based label.
jlab = new JLabel("Press a button.");

// Add the label to the content pane.
jfrm.add(jlab);

// Display the frame.
jfrm.setVisible(true);
}

public static void main(String args[]) {
// Create the frame on the event dispatching thread.
SwingUtilities.invokeLater(new Runnable() {
public void run() {
new EventDemo();
}
});
}
}

Page 21 of 21Page 21 of 21Page 21 of 21

