
CMR  
INSTITUTE OF 
TECHNOLOGY 

 

                                                    
USN           

 

Scheme and Solutiosn - Improvement Test  
Sub: Object Oriented Concepts Code:       15CS45 

Date:  Duration:  90 mins Max Marks:     50 Sem:   IV Branch: ISE 

Answer Any FIVE FULL Questions 

 Marks 
OBE 

CO RBT 

 1 (a) Which is the alternative approach to implement multiple inheritance in Java? 
Explain, with an example. 
 
Multiple inheritance in Java by interface 
If a class implements multiple interfaces, or an interface extends multiple 
Interface that is known as multiple inhertitance. 

 
 
interface Printable{   
1 void print();   
2 }   
3 interface Showable{   
4 void show();   
5 }   
6 class A7 implements Printable,Showable{   
7 public void print(){System.out.println("Hello");}   
8 public void show(){System.out.println("Welcome");}   
9    
10 public static void main(String args[]){   
11 A7 obj = new A7();   
12 obj.print();   
13 obj.show();   
14  }   
15 }   
16  
Output:Hello 
       Welcome 

[10] CO3 L4 



 
Multiple inheritance is not supported through class in java but it is possible by interface, why? 
As we have explained in the inheritance chapter, multiple inheritance is not supported in case of class because of ambiguity. But it is supported in case of interface because there is no 
ambiguity as implementation is provided by the implementation class. For example: 
 
1 interface Printable{   
2 void print();   
3 }   
4 interface Showable{   
5 void print();   
6 }   
7    
8 class TestTnterface3 implements Printable, Showable{   
9 public void print(){System.out.println("Hello");}   
10 public static void main(String args[]){   
11 TestTnterface1 obj = new TestTnterface1();   
12 obj.print();   
13  }   
14 }   
 
Output: 
Hello 
As you can see in the above example, Printable and Showable interface have same methods but its implementation is provided by class TestTnterface1, so there is no ambiguity. 
Interface inheritance 
A class implements interface but one interface extends another interface . 
 
1 interface Printable{   
2 void print();   
3 }   
4 interface Showable extends Printable{   
5 void show();   
6 }   
7 class TestInterface4 implements Showable{   
8 public void print(){System.out.println("Hello");}   
9 public void show(){System.out.println("Welcome");}   
10    
11 public static void main(String args[]){   
12 TestInterface4 obj = new TestInterface4();   
13 obj.print();   
14 obj.show();   
15  }   
16 }   

 
 

2 (a) What is the need of synchronization? Explain with an example, how 
synchronization is implemented in JAVA? 
 
Multithreading is a conceptual programming concept where a program (process) 
is divided into two or more subprograms (process), which can be implemented 

   [10] CO4 L4 



at the same time in parallel. A multithreaded program contains two or more 
parts that can run concurrently. Each part of such a program is called a thread, 
and each thread defines a separate path of execution. A process consists of the 
memory space allocated by the operating system that can contain one or more 
threads. A thread cannot exist on its own; it must be a part of a process. 
 
When two or more threads need access to a shared resource, they need some 
way to ensure that the resource will be used by only one thread at a time. The 
process by which this synchronization is achieved is called thread 
synchronization. The synchronized keyword in Java creates a block of code 
referred to as a critical section. Every Java object with a critical section of code 
gets a lock associated with the object. To enter a critical section, a thread needs 
to obtain the corresponding object's lock. 

 Example without Synchronization  

 

   [10] CO5 L4 

  
 

 

   CO3 L3 



 
Example withSynchronization 

 

 

   

 
3 (a) What are applets? Explain the different stages in the life cycle of an applet. 

 
An applet is a window-based program; its architecture is different from the 
console-based Programs  

First, applets are event driven.  

An applet waits until an event occurs. The run-time system notifies the applet 
about an event by calling an event handler that has been provided by the applet. 
Once this happens, the applet must take appropriate action and then quickly 
return. This is a crucial point. For the most part applet should not enter a “mode” 
of operation in which it maintains control for an extended period. Instead, it must 

   [10] CO5 L4 



perform specific actions in response to events and then return control to the run- 
time system. In those situations, in which your applet needs to perform a 
repetitive task on its own (for example, displaying a scrolling message across its 
window),  

Second, the user initiates interaction with an applet—not the other way 
around.  

In a non-windowed program, when the program needs input, it will prompt the 
user and then call some input method, such as readLine( ). This is not the way it 
works in an applet. Instead, the user interacts with the applet as he or she wants, 
when he or she wants. These interactions are sent to the applet as events to which 
the applet must respond. For example, when the user clicks the mouse inside the 
applet’s window, a mouse-clicked event is generated. If the user presses a key 
while the applet’s window has input focus, a keypress event is generated.  

Applets override a set of methods that provides the basic mechanism by which 
the browser or applet viewer interfaces to the applet and controls its execution. 
Four of these methods, init( ), start( ), stop( ), and destroy( ), apply to all applets 
and are defined by Applet. Default implementations for all of these methods are 
provided. Applets do not need to override those methods they do not use.  

// An Applet skeleton. import java.awt.*; import java.applet.*; /*  

<applet code="AppletSkel" width=300 height=100> </applet> */ public 
class AppletSkel extends Applet  

{ // Called first.  

// set the foreground and background colors. public void init() {  

setBackground(Color.cyan); setForeground(Color.red); msg = "Inside init( ) 
--";  

}  

/* Called second, after init(). Also called whenever the applet is restarted. 
*/ // Initialize the string to be displayed. public void start()  

{ msg += " Inside start( ) --";  

}  



// Called when the applet is stopped. public void stop() {  

// suspends execution }  

/* Called when applet is terminated. This is the last method executed. 
*/ public void destroy() {  

// perform shutdown activities }  

// Called when an applet's window must be restored. // Display msg in applet 
window. public void paint(Graphics g) {  

msg += " Inside paint( ).";  

g.drawString(msg, 10, 30); }  

} · Applet Initialization and Termination  

It is important to understand the order in which the various methods shown in the 
skeleton are called. When an applet begins, the following methods are called, in 
this sequence: 1. init( ) 2. start( )  

3. paint( ) When an applet is terminated, the following sequence of method calls 
takes place: 1. stop( ) 2. destroy( )  

init( ) - The init( ) method is the first method to be called. This is where you 
should initialize variables. This method is called only once during the run 
time of your applet.   

start( ) - The start( ) method is called after init( ). It is also called to restart an 
applet after it has been stopped. Whereas init( ) is called once—the first 
time an applet is loaded—start( ) is called each time an applet’s HTML 
document is displayed onscreen. So, if a user leaves a web page and 
comes back, the applet resumes execution at start( ).   

paint( ) - The paint( ) method is called each time your applet’s output must be 
redrawn. This situation can occur for several reasons. For example, the 
window in which the applet is running may be overwritten by another 
window and then uncovered. Or the applet window may be minimized 
and then restored. paint( ) is also called when the applet begins 
execution. Whatever the cause, whenever the applet must redraw its 
output, paint( ) is called. The paint() method has one parameter of type 



Graphics. This parameter will contain the graphics context, which 
describes the graphics environment in which the applet is running. This 
context is used whenever output to the applet is required.   

stop( ) - The stop( ) method is called when a web browser leaves the HTML 
document containing the applet—when it goes to another page, for 
example. When stop( ) is called, the applet is probably running. You 
should use stop( ) to suspend threads that don’t need to run when the 
applet is not visible. You can restart them when start( ) is called if the 
user returns to the page.   

destroy( ) - The destroy( ) method is called when the environment determines 
that your applet needs to be removed completely from memory. At this 
point, you should free up any resources the applet may be using. The 
stop( ) method is always called before destroy( ).   

 
 

4 (a) Define Exception. Demonstrate the working of exception handling and nested try 
blocks, with suitable examples. 
 
Exception is an abnormal condition. In Java, exception is an event that disrupts 
the normal flow of the program. It is an object which is thrown at runtime. 
Exception normally disrupts the normal flow of the application that is why we 
use exception handling. The exception handling in Java is one of the powerful 
mechanism to handle the runtime errors so that normal flow of the application 
can be maintained. There are 5 keywords used in java exception handling.  

1. try 2. catch 3. finally 4. throw 5. throws  

Java try block  

Java try block is used to enclose the code that might throw an exception. It must 
be used within the method. Java try block must be followed by either catch or 
finally block. Java catch block is used to handle the Exception. It must be used 
after the try block only. You can use multiple catch block with a single try.  

public class Test_try_catch {  

public static void main(String args[]) { try  

   [10] CO3 L3 



{ int data=50/0;  

}catch(ArithmeticException e) {  

System.out.println(e); }  

finally {  

System.out.println("rest of the code..."); }  

} }  

Output:  

Exception in thread main java.lang.ArithmeticException:/ by zero rest of the 
code...  

 
The JVM firstly checks whether the exception is handled or not. If exception is 
not handled, JVM provides a default exception handler that performs the 
following tasks:  

  ·  Prints out exception description.   

  ·  Prints the stack trace (Hierarchy of methods where the exception 
occurred).   

  ·  Causes the program to terminate.  But if exception is handled by the 
application programmer, normal flow of the application is maintained i.e. 
rest of the code is executed.   

 
 



 
 
5 (a) What is the difference between Method Overloading and Method Overriding. 

Explain with suitable examples. 
 
Method Overriding In a class hierarchy, when a method in a subclass has the 
same name and signature as a method in its superclass, then the method in the 
subclass is said to override the method in the superclass. When an overridden 
method is called from within a subclass, it will always refer to the version of that 
method defined by the subclass. The version of the method defined by the 
superclass will be hidden.  

E.g. class A {  

int i, j;  

A(int a, int b) {  

i = a;  

j = b; }  

// display i and j void show() {  

System.out.println("i and j: " + i + " " + j); }  

}  

class B extends A {  

int k; B(int a, int b, int c) {  

super(a, b);  

k = c; }  

// display k – this overrides show() in A void show() {  

System.out.println("k: " + k); }  

}  

class Override {  

[10] CO2 L2 



public static void main(String args[]) {  

B subOb = new B(1, 2, 3);  

subOb.show(); // this calls show() in B }  

}  

When show( ) is invoked on an object of type B, the version of show( ) defined 
within B is used. That is, the version of show( ) inside B overrides the version 
declared in A.  

Overloading Methods  

In Java it is possible to define two or more methods within the same class that 
share the same name, as long as their parameter declarations are different. When 
this is the case, the methods are said to be overloaded, and the process is referred 
to as method overloading. Method overloading is one of the ways that Java 
supports polymorphism. When an overloaded method is invoked, Java uses the 
type and/or number of arguments as its guide to determine which version of the 
overloaded method to actually call. Thus, overloaded methods must differ in the 
type and/or number of their parameters. While overloaded methods may have 
different return types, the return type alone is insufficient to distinguish two 
versions of a method. When Java encounters a call to an overloaded method, it 
simply executes the version of the method whose parameters match the 
arguments used in the call.  

// Demonstrate method overloading. class OverloadDemo {  

void test() {  

System.out.println("No parameters"); }  

// Overload test for one integer parameter. void test(int a) {  

System.out.println("a: " + a); }  

// Overload test for two integer parameters. void test(int a, int b) {  

System.out.println("a and b: " + a + " " + b); }  

// overload test for a double parameter double test(double a) {  



System.out.println("double a: " + a);  

return a*a; }  

} class Overload {  

public static void main(String args[]) {  

} }  

OverloadDemo ob = new OverloadDemo(); double result; // call all versions 
of test() ob.test();  

ob.test(10); ob.test(10, 20); result = 
ob.test(123.25); System.out.println("Result of ob.test(123.25): " + result);  

test( ) is overloaded four times. The first version takes no parameters, the second 
takes one integer parameter, the third takes two integer parameters, and the 
fourth takes one double parameter. The fact that the fourth version of test( ) also 
returns a value is of no consequence relative to overloading, since return types do 
not play a role in overload resolution. When an overloaded method is called, Java 
looks for a match between the arguments used to call the method and the 
method’s parameters. However, this match need not always be exact. In some 
cases, Java’s automatic type conversions can play a role in overload resolution. 
Method overloading supports polymorphism because it is one way that Java 
implements the “one interface, multiple methods” paradigm.  

Rules for Method Overriding  

  ·  The argument list should be exactly the same as that of the overridden 
method.   

  ·  The return type should be the same or a subtype of the return type 
declared in the original  overridden method in the superclass.   

  ·  The access level cannot be more restrictive than the overridden 
method's access level. For  example: If the superclass method is declared 
public then the overridding method in the sub  class cannot be either 
private or protected.   

  ·  Instance methods can be overridden only if they are inherited by the 
subclass.   



  ·  A method declared final cannot be overridden.   

  ·  A method declared static cannot be overridden but can be re-declared. 
  

  ·  If a method cannot be inherited, then it cannot be overridden.   

  A subclass within the same package as the instance's superclass can 
override any superclass  method that is not declared private or final.   

  A subclass in a different package can only override the non-final methods 
declared public  or protected.   

 
6 (a)  Explain the constructors in Java. How is it different from other member 

functions. 
 
It can be tedious to initialize all of the variables in a class each time an instance 
is created. Because the requirement for initialization is so common, Java allows 
objects to initialize themselves when they are created. This automatic 
initialization is performed through the use of a constructor. A constructor 
initializes an object immediately upon creation. It has the same name as the class 
in which it resides and is syntactically similar to a method. Once defined, the 
constructor is automatically called immediately after the object is created, before 
the new operator completes. Constructors look a little strange because they have 
no return type, not even void. This is because the implicit return type of a class’ 
constructor is the class type itself. It is the constructor’s job to initialize the 
internal state of an object so that the code creating an instance will have a fully 
initialized, usable object immediately.  

/* Here, Box uses a constructor to initialize the dimensions of a box. */ class 
Box  

{ double width;  

double height; double depth;  

// This is the constructor for Box. Box() {  

System.out.println("Constructing Box"); width = 10; height = 10; depth = 
10;  

[06] CO2 L4 



}  

// compute and return volume double volume() {  

return width * height * depth; }  

} class BoxDemo {  

public static void main(String args[]) {  

} }  

// declare, allocate, and initialize Box objects Box mybox1 = new Box(); Box 
mybox2 = new Box(); double vol;  

// get volume of first box vol = mybox1.volume(); 
System.out.println("Volume is " + vol);  

// get volume of second box vol = mybox2.volume(); 
System.out.println("Volume is " + vol);  

Both mybox1 and mybox2 were initialized by the Box( ) constructor when they 
were created. Since the constructor gives all boxes the same dimensions, 10 by 
10 by 10, both mybox1 and mybox2 will have the same volume. The println( ) 
statement inside Box( ) is for the sake of illustration only. Most constructors will 
not display anything. They will simply initialize an object.  

· Parameterized Constructors  

While the Box( ) constructor in the preceding example does initialize a Box 
object, it is not very useful—all boxes have the same dimensions. What is needed 
is a way to construct Box objects of various dimensions. The easy solution is to 
add parameters to the constructor. As you can probably guess, this makes them 
much more useful. For example, the following version of Box  

defines a parameterized constructor that sets the dimensions of a box as specified 
by those parameters. Pay special attention to how Box objects are created.  

/* Here, Box uses a parameterized constructor to initialize the dimensions of 
a box. */ class Box  

{ double width;  



double height; double depth;  

// This is the constructor for Box. Box(double w, double h, double d) {  

width = w; height = h; depth = d;  

}  

// compute and return volume double volume() {  

return width * height * depth; }  

}  

class BoxDemo {  

public static void main(String args[]) {  

// declare, allocate, and initialize Box objects Box mybox1 = new Box(10, 20, 
15); Box mybox2 = new Box(3, 6, 9); double vol;  

// get volume of first box vol = mybox1.volume(); 
System.out.println("Volume is " + vol);  

// get volume of second box vol = mybox2.volume(); 
System.out.println("Volume is " + vol);  

}  

}  

As you can see, each object is initialized as specified in the parameters to its 
constructor. For example, in the following line, Box mybox1 = new Box(10, 20, 
15); the values 10, 20, and 15 are passed to the Box( ) constructor when new 
creates the object. Thus, mybox1’s copy of width, height, and depth will 
contain the values 10, 20, and 15, respectively.  

 

 
   (b) With an example, explain call to this() and call to super(). 

In Java, this is a reference variable that refers to the current object. this() can be 
used to invoke current class constructor (constructor chaining). This approach is 
better if you have many constructors in the class and want to reuse that 

[04] CO3 L4 



constructor.  

class Student {  

int id; String name; Student() {  

System.out.println("default constructor is invoked"); }  

Student(int id,String name) {  

this ();//it is used to invoked current class constructor. this.id = 
id; this.name = name;  

} Student(int id, String name, String city) {  

this(id, name);//now no need to initialize id and name  

this.city=city; }  

void display() {  

System.out.println(id+" "+name); }  

public static void main(String args[]) {  

Student e1 = new Student(001,"Nirmal"); Student e2 = new 
Student(002,"Pandey"); e1.display(); e2.display();  

}  

}  

· Super()  

The super keyword in java is a reference variable that is used to refer immediate 
parent class object. Whenever you create the instance of subclass, an instance of 
parent class is created implicitly i.e. referred by super reference variable.  

· Usage of java super Keyword  

super is used to refer immediate parent class instance variable.   

super() is used to invoke immediate parent class constructor.   



super is used to invoke immediate parent class method.   

· super is used to invoke parent class constructor.  

class Vehicle {  

Vehicle() {  

System.out.println("Vehicle is created"); }  

} class Bike extends Vehicle {  

Bike() {  

System.out.println("Bike is created"); }  

public static void main(String args[]) {  

Bike b=new Bike(); }  

}  

super();//will invoke parent class constructor  

A default constructor is provided by compiler automatically but it also adds 
super() for the first statement. If we are creating our own constructor and if we 
don't have either this() or super() as the first statement, compiler will provide 
super() as the first statement of the constructor.  

 

  
 

       
 
 
 
 
 


