CMR

INSTITUTE OF
TECHNOLOGY USN
Improvement Test
Sub: Unix System Programming Code: 10CS62
90 Max

Date: 31/05/2017 Duration: 50 @ Sem: VI Branch: | SE

mins Marks:
Answer Any FIVE FULL Questions

OBE
Marks =5 T ReT

1 (a) What are signals? List any four signals along with brief explanation .Explain with a progran [10] CO4 L3
how to set up a handler

2 (@ What isdaemon process? Discuss its characteristics and coding rules [100 CO5 L2
3(a) DiscussUNIX and POSIX standardsin detail. [100 CcO2 L2
Write a C/C++ program to check the following limits
a. Clock ticks

b. Max number of child process
¢. Max path length
d. Max file name
e. Max charactersin file
4 (a) Explainbriefly kill() APl and alarm()) AP [100 cOo4 L3

5(@ What do you mean by fork() and vfork() functions ? Explain both the functions with example [10] | CO4 L2
programs (write separate programs)

6(a) What arefile? Discuss variousfiletypesin UNIX in detail with proper example. [100 CO2 L2
7(a Explain the major difference between ANSI ‘C’” and K & R “‘C’ with example in detail. [100 CO1 @ L2
8(a) Explain the memory layout of ‘C” Program [5] CcCo4 | L2
8(b) Writethe prototypes of system library calls available to manipulate shared memory [5] Co6 L2

***********************************AII the beg**

#132, AECS Layout, IT Park Road, Kundalahalli, Bangalore — 560 037, T:+9180 28524466 / 77

CMR \\W
INSTITUTE OF E\\
TECHNOLOGY CMR

Scheme and solution for Improvement Test-May 2017

Q. 1 a) What are signals? List any four signals along with brief explanation .Explain with a program how to set up a
handler-10

Definition signal -2M

Signals are software interrupts. Signals provide a way of handling asynchronous events: a user at a terminal typing

the interrupt key to stop a program or the next program in a pipeline terminating prematurely.

Any four signal with brief explanation-4M

Name Description Default action
SIGABRT abnormal termination (abort) terminate+core
SIGALRM timer expired (alarm) terminate
SIGBUS hardware fault terminate+core
SIGCANCEL threads library internal use ignore
SIGCHLD change in status of child ignore
SIGCONT continue stopped process continue/ignore
SIGEMT hardware fault terminate+core
SIGFPE arithmetic exception terminate+core
SIGFREEZE checkpoint freeze ignore

SIGHUP hangup terminate
SIGILL illegal instruction terminate+core
SIGINFO status request from keyboard ignore

SIGINT terminal interrupt character terminate

Program-4M

The following example attempts to catch the SIGTERM signal, ignores the SIGINT signal, and accepts the default
action of the SIGSEGV signal. The pause APl suspends the calling process until it is interrupted by a signal and the
corresponding signal handler does a return:

#include<iostream.h>

#include<signal.h>

/*signal handler function*/

void catch_sig(int sig num)

{

signal (sig_num,catch_sig);

cout<<”catch sig:”<<sig num<<endl;

/*main function*/

int main()

{

signal (SIGTERM, catch sig);

signal (SIGINT,SIG_IGN) ;

signal (SIGSEGV,SIG_DFL) ;

pause() ; /*wait for a signal interruption*/
}

Q. 2a) What is daemon process? Discuss its characteristics and coding rules

Characteristics-4M
The characteristics of daemons are:

= Daemons run in background.

= Daemons have super-user privilege.

= Daemons don’t have controlling termina
= Daemons are session and group leaders.

Coding Rules-Program 3M

Explanation -3M

CODING RULES

Call umask to set the file mode creation mask to 0. The file mode creation mask that's inherited could be
set to deny certain permissions. If the daemon process is going to create files, it may want to set specific
permissions.

Call fork and have the parent exit. This does several things. First, if the daemon was started as a simple
shell command, having the parent terminate makes the shell think that the command is done. Second, the
child inherits the process group ID of the parent but gets a new process ID, so we're guaranteed that the
child is not a process group leader.

Call setsid to create a new session. The process (a) becomes a session leader of a new session, (b)
becomes the process group leader of a new process group, and (c) has no controlling terminal.

Change the current working directory to the root directory. The current working directory inherited from
the parent could be on a mounted file system. Since daemons normally exist until the system is rebooted, if
the daemon stays on a mounted file system, that file system cannot be unmounted.

Unneeded file descriptors should be closed. This prevents the daemon from holding open any descriptors
that it may have inherited from its parent.

Some daemons open file descriptors 0, 1, and 2 to /dev/null so that any library routines that try to read
from standard input or write to standard output or standard error will have no effect. Since the daemon is
not associated with a terminal device, there is nowhere for output to be displayed; nor is there anywhere to
receive input from an interactive user. Even if the daemon was started from an interactive session, the
daemon runs in the background, and the login session can terminate without affecting the daemon. If other
users log in on the same terminal device, we wouldn't want output from the daemon showing up on the
terminal, and the users wouldn't expect their input to be read by the daemon.

Example Program:

#include <unistd,h>

#include <sys/types.h>
#include <fentl.h>

int daemon initialise()

{

pid t pid;
if ((pid = for()) < 0)
return -1;
else 1f (paid '= 0)
exit(0) ; /* parent exits */

/* child continues */
setsid() :

chdir (™“/") ;

umask (0) ;

return 0;

Q.3a) Discuss UNIX and POSIX standards in detail.
Write a C/C++ program to check the following limits
a. Clock ticks
b. Max number of child process
c. Max path length
d. Max file name
e. Max characters in file

POSIX standards-5M
The POSIX standards

= POSIX or “Portable Operating System Interface” is the name of a family of related standards specified by the
IEEE to define the application-programming interface (APIl), along with shell and utilities interface for the
software compatible with variants of the UNIX operating system.
= Because many versions of UNIX exist today and each of them provides its own set of APl functions, it is
difficult for system developers to create applications that can be easily ported to different versions of UNIX.
= Some of the subgroups of POSIX are POSIX.1, POSIX.1b & POSIX.1c are concerned with the development of
set of standards for system developers.
= POSIX.1
This committee proposes a standard for a base operating system API; this standard specifies APIs for
the manipulating of files and processes.
» It is formally known as IEEE standard 1003.1-1990 and it was also adopted by the ISO as the
international standard ISO/IEC 9945:1:1990.
= POSIX.1b
» This committee proposes a set of standard APIs for a real time 0S interface; these include IPC (inter-
process communication).
» This standard is formally known as IEEE standard 1003.4-1993.
= POSIX.1c
This standard specifies multi-threaded programming interface. This is the newest POSIX standard.
» These standards are proposed for a generic OS that is not necessarily be UNIX system.
» E.g.: VMS from Digital Equipment Corporation, 05/2 from IBM, & Windows NT from Microsoft
Corporation are POSIX-compliant, yet they are not UNIX systems.
» To ensure a user program conforms to POSIX.1 standard, the user should either define the
manifested constant _POSIX_SOURCE at the beginning of each source module of the program

(before inclusion of any header) as;
#define _POSIX_SOURCE

Or specify the -D_POSIX_SOURCE option to a C++ compiler (CC) in a compilation;
% CC -D_POSIX_ SOURCE *.C

» POSIX.1b defines different manifested constant to check conformance of user program to that
standard. The new macro is _POSIX_C_SOURCE and its value indicates POSIX version to which a user
program conforms. Its value can be:

_POSIX_C_SOURCE VALUES MEANING

198808L First version of POSIX.1 compliance
199009L Second version of POSIX.1 compliance
199309L POSIX.1 and POSIX.1b compliance

» _POSIX_C_SOURCE may be used in place of _POSIX_SOURCE. However, some systems that support
POSIX.1 only may not accept the _POSIX_C_SOURCE definition.

» Thereis also a _POSIX_VERSION constant defined in <unistd.h> header. It contains the POSIX version
to which the system conforms.

Although POSIX was developed on UNIX, a POSIX complaint system is not necessarily a UNIX system. A few UNIX
conventions have different meanings according to the POSIX standards. Most C and C++ header files are stored
under the /usr/include directory in any UNIX system and each of them is referenced by

#include<header-file-name>

This method is adopted in POSIX. There need not be a physical file of that name existing on a POSIX conforming
svstem.

Program-5M

, :ﬂ'de{f’ne — PosStx— SOURCE
Hdefene _ ppsix— C- SOVRCE 1993094

4 Frctucle <Stcio.h >
HEhecude < Posbeaun vy
2 Puetuel <umlgtel:h >
Prt- mafnC)

{

@n[" Nnes
f (€ %es ==§gxcon£ { _wr. Ei R TERY) == -|)
penmor C"Q?,vcon{ Ly
| else
| Cout- << "Lk . TCR" K< Qe << end

Bl (qes = = cyteon { (~gc- cHikp-pAx))==-1)
f)em'\yr (“S’ganf"); |

elge \
Coul~< "c,HILD-MDX"<<91€S<<MdU ‘

| H (e == pathconf ("/" _pc-PATH_mAX)) ==-1) |
| perroy ("/;amcon{ ")

elge
Coud- << ' PATH- MAX " << (aes+ 1) << eadd]

Pf dé’F _Posi X_ ope Nt —MAX

coud- <L ! mayx _ OPent - MA + G 4 << _ POSIX — DPEN —MAX <L encll;
else
Cont- << " Qomnre Hn fmj naro wg << et
0) = - ;
f{ ((91,:§_—.l.£ ;}CLI{n (Cj/‘)g (G) _P(_CHCVOA”_RGQIR’("'F D)):.—--—l)

perror (¢ -//9“”4(0u\.{f)4
elce
Cout << " chowon — qesiret-ed for Ql-dln i << %e & Kendls
Qheluwm O

;

Q. 4a) Explain briefly kill() APT and alarm() API
Kill API-Prototype-2M

Explanation with example-3M

A process can send a signal to a related process via the kill API. This is a simple means of inter-process
communication or control. The function prototype of the APl is:

#include<signal.h>

int kill(pid_t pid, int signal_num);

Returns: 0 on success, -1 on failure.

The following program illustrates the implementation of the UNIX kill command using the kill API:
#include<iostream.h>

#include<stdio.h>

#include<unistd.h>

#include<string.h>

#include<signal.h>

int main(int arge,char** argwv)
{
int pid, sig = SIGTERM;
if (arge==3)
{
if (sscanf (argv([1] ,"%d", &sig) 1=1)
{
cerr<<"invalid number:” << argv[l] << endl;
return -1;
}
argvi+ argo——;
}
while (-—arge>0)
if (sscanf (*++argv, “%d”, &pid)=1)

i
if (kill(pid,sig)==-1)
perror (“kill”) ;
}
else
cerr<<"invalid pid:” << argv[0] <<endl;
return 0;

}
The UNIX kill command invocation syntax is:
Kill [-<signal_num>] <pid>......

Where signal_num can be an integer number or the symbolic name of a signal. <pid> is process ID.

Alarm API()-Prototype-2M

Explanation with example — 3M

The alarm API can be called by a process to request the kernel to send the SIGALRM signal after a certain number of
real clock seconds. The function prototype of the APl is:

#include<signal .h>

Unsigned int alarm(unsigned int time interval);

Returns: 0 or number of seconds until previously set alarm

The alarm API can be used to implement the sleep API:
#include<signal .h>
#include<stdic.h>

#include<unistd.h>

void wakeup()
{1

unsigned int sleep (unsigned int timer)
{
struct sigaction action;
action.sa_handler=wakeup;
action.sa flags=0;
sigemptyset (&action.sa mask) ;
if (sigaction (SIGALARM, faction, 0)==-1)
{
perror (“sigaction”) ;
return -1;
}
(void) alarm (timer) ;
(void) pause();

return 0;

Q. 5a) What do you mean by fork() and vfork() functions ? Explain both the functions with example programs
(write separate programs)

Fork() prototype +explanation -2M

Program-3M

An existing process can create a new one by calling the fork function.

#include <unistd.h>
pid_t fork(void);

Returns: 0 in child, process ID of child in parent, 1 on error.

® The new process created by forkis called the child process.

e This function is called once but returns twice.

e The only difference in the returns is that the return value in the child is 0, whereas the return value in the
parent is the process ID of the new child.

e The reason the child's process ID is returned to the parent is that a process can have more than one child,
and there is no function that allows a process to obtain the process IDs of its children.

e The reason fork returns O to the child is that a process can have only a single parent, and the child can
always call getppid to obtain the process ID of its parent. (Process ID 0 is reserved for use by the kernel, so
it's not possible for 0 to be the process ID of a child.)

* Both the child and the parent continue executing with the instruction that follows the call to fork.

e The child is a copy of the parent.

® Forexample, the child gets a copy of the parent's data space, heap, and stack.

Note that this is a copy for the child; the parent and the child do not share these portions of memory.

#include<sys/types.h>
#include<unistd.h>
int a=10;

int main()

{

Pid_t pid; int b=20;

Pid=fork();
If(pid==0)
{ a++;b++;}

else { sleep() ;}

printf(“a= %d b= %d pid= %d ppid= %d”,&a,&b, getpid(),getppid());
}
Output:
a= 10 b=20 pid=100 ppid=200

a=11b=21 pid=230 ppid=100

vfork() prototype +explanation=2M

Program+explanation-3M

viork FUNCTION

v The function v£ork has the same calling sequence and same return values as fork.

v" The vfork function is intended to create a new process when the purpose of the new process is to exec a
new program.

v" The vfork function creates the new process, just like fork, without copying the address space of the
parent into the child, as the child won't reference that address space; the child simply calls exec (or exit)
right after the vfork.

v" Instead, while the child is running and until it calls either exec or exit, the child runs in the address space
of the parent. This optimization provides an efficiency gain on some paged virtual-memory implementations
of the UNIX System.

v Another difference between the two functions is that vfork guarantees that the child runs first, until the
child calls exec or exit. When the child calls either of these functions, the parent resumes.

Example of v£fork function

#include "apue.h"
int glob = 6; /* external variable in initialized data */

int main (void)

{
int var; /* automatic wvariable on the stack */
pid t pid;
wvar = B88;
printf ("before wvfork\n") ; /* we don't flush stdioc */
if ((pid = vfork()) < 0) {
err sys("vfork error");
} else if (pid == 0) { /* child */
glob++; /* modify parent's wvariables */
var++;
_exit(0); /* child terminates */
}
/t
* Parent continues here.
*/
printf ("pid = %d, glob = %d, war = %d\n", getpid(), glob, wvar);
exit(0);
}
Output:

&

5 .fa.out
before viork
pid = 29039, glcb = 7, war = B9

Q. 6a) What are file? Discuss various file types in UNIX in detail with proper example.
File Definition-1M

Files are the building blocks of any operating system. When you execute a command in UNIX, the UNIX kernel
fetches the corresponding executable file from a file system, loads its instruction text to memory, and creates a
process to execute the command on your behalf. In the course of execution, a process may read from or write to
files. All these operations involve files. Thus, the design of an operating system always begins with an efficient file
management system.

Regular file -1M

Each file type + explanation-4*2M=8M

File Types
A file in a UNIX or POSIX system may be one of the following types:

regular file
directory file

FIFO file

Character device file
Block device file

YOY Y Y

<+ Regular file
= Aregular file may be either a text file or a binary file
= These files may be read or written to by users with the appropriate access permission
= Regular files may be created, browsed through and modified by various means such as text editors or
compilers, and they can be removed by specific system commands
%+ Directory file
= |tis like a folder that contains other files, including sub-directory files.
= |t provides a means for users to organise their files into some hierarchical structure based on file
relationship or uses.
= Ex: /bin directory contains all system executable programs, such as cat, rm, sort
= Adirectory may be created in UNIX by the mkdir command
o Ex:mkdir /usr/foo/xyz
= Adirectory may be removed via the rmdir command
o Ex:rmdir /usr/foo/xyz
= The content of directory may be displayed by the Is command

++ Device file

Block device file Character device file

It represents a physical device that transmits dataa It represents a physical device that transmits datain a
block at a time. character-based manner.

Ex: hard disk drives and floppy disk drives Ex: line printers, modems, and consoles

= A physical device may have both block and character device files representing it for different access
methods.

= An application program may perform read and write operations on a device file and the OS will
automatically invoke an appropriate device driver function to perform the actual data transfer hetween
the physical device and the application

= An application program in turn may choose to transfer data by either a character-based(via character
device file) or block-based(via block device file)

= Adevice file is created in UNIX via the mknod command

o EX: mknod /dev/cdsk c 115 5
Here, [« - character device file
115 - major device number

5 - minor device number

% FIFO file

It is a special pipe device file which provides a temporary buffer for two or more processes to
communicate by writing data to and reading data from the buffer.
The size of the buffer is fixed to PIPE_BUF.
Data in the buffer is accessed in a first-in-first-out manner.
The buffer is allocated when the first process opens the FIFO file for read or write
The buffer is discarded when all processes close their references (stream pointers) to the FIFO file.
Data stored in a FIFO buffer is temporary.
A FIFO file may be created via the mkfifo command.
o The following command creates a FIFO file (if it does not exists)
mkfifo /usr/prog/fifo pipe
o The following command creates a FIFO file (if it does not exists)
mknod /usr/prog/fifo pipe P
FIFO files can be removed using rm command.

% Symbolic link file

BSD UNIX & SV4 defines a symbolic link file.

A symbolic link file contains a path name which references another file in either local or a remote file
system.

POSIX.1 does not support symbolic link file type

A symbolic link may be created in UNIX via the In command

Ex: 1n -s /usr/divya/original /usr/raj/slink

It is possible to create a symbolic link to reference another symbolic link.

rm, mv and chmod commands will operate only on the symbolic link arguments directly and not on the
files that they reference.

Q. 7a) Explain the major difference between ANSI ‘C’ and K & R ‘C’ with example in detail.

Listing the major differences-2M

Each difference + explanation=2M*4=8M

The major differences between ANSI C and K&R C [Kernighan and Ritchie] are as follows:

* Function prototyping

e Support of the const and volatile data type qualifiers.

e Support wide characters and internationalization.

e Permit function pointers to be used without dereferencing.
Function prototyping
ANSI C adopts C++ function prototype technique where function definition and declaration include function names,
arguments’ data types, and return value data types. This enables ANSI C compilers to check for function calls in user
programs that pass invalid number of arguments or incompatible arguments’ data type.
These fix a major weakness of K&R C compilers: invalid function calls in user programs often pass compilation but

cause programs to crash when they are executed.
Eg: unsigned long foo (char * fmt, double data)
{
/*body of foo*/
}
External declaration of this function foo is
unsigned long foo (char * fmt, double data);

eg: int printf(const char* fmt,...........)
specify variable number of arguments
Support of the const and volatile data type qualifiers.

= The const keyword declares that some data cannot be changed.
Eg: int printf(const char* fmt,...........);
Declares a fmt argument that is of a const char * data type, meaning that the function printf cannot modify
data in any character array that is passed as an actual argument value to fmt.

= Volatile keyword specifies that the values of some variables may change asynchronously, giving an hint to
the compiler’s optimization algorithm not to remove any “redundant” statements that involve “volatile”

objects.
eg: char get io()
{
volatile char* io port = 0x7777;
char ch = *io port; /*read first byte of data*/
ch = *io port; /*read second byte of data*/

If io_port variable is not declared to be volatile when the program is compiled, the compiler may eliminate

second ch = *io_port statement, as it is considered redundant with respect to the previous statement.

= ANSI C supports internationalisation by allowing C-program to use wide characters. Wide characters use
more than one byte of storage per character.

= ANSI C defines the setlocale function, which allows users to specify the format of date, monetary and real
number representations.
For eg: most countries display the date in dd/mm/yyyy format whereas US displays it in mm/dd/yyyy format.

= Function prototype of setlocale function is:

#include<locale . h>
char setlocale (int category, const char* locale);

Permit function pointers without dereferencing
ANSI C specifies that a function pointer may be used like a function name. No referencing is needed when calling a
function whose address is contained in the pointer.
For Example, the following statement given below defines a function pointer funptr, which contains the address of
the function foo.
extern void foo(double xyz,const int *ptr);
void (*funptr) (double,const int *)=foo;
The function foo may be invoked by either directly calling foo or via the funptr.
foo(12.78,"Hello world”) ;
funptr (12.78,"Hello world”) ;
K&R C requires funptr be dereferenced to call foo.
(* funptr) (13.48,"Hello usp”);
ANSI C also defines a set of C processor(cpp) symbols, which may be used in user programs. These symbols are

assigned actual values at compilation time.

Q.8 a) Explain the memory layout of ‘C’ Program

Diagram-2M Explanation-3M

Historically, a C program has been composed of the following pieces:

* Text segment, the machine instructions that the CPU executes. Usually, the text segment is sharable so that
only a single copy needs to be in memory for frequently executed programs, such as text editors, the C
compiler, the shells, and so on. Also, the text segment is often read-only, to prevent a program from
accidentally modifying its instructions.

e Initialized data segment, usually called simply the data segment, containing variables that are specifically

initialized in the program. For example, the C declaration
int maxcount = 99;

appearing outside any function causes this variable to be stored in the initialized data segment with its initial
value.

« Uninitialized data segment, often called the "bss" segment, named after an ancient assembler operator that
stood for "block started by symbol." Data in this segment is initialized by the kernel to arithmetic 0 or null
pointers before the program starts executing. The C declaration

long sum[1000];
appearing outside any function causes this variable to be stored in the uninitialized data segment.

e Stack, where automatic variables are stored, along with information that is saved each time a function is
called. Each time a function is called, the address of where to return to and certain information about the
caller's environment, such as some of the machine registers, are saved on the stack. The newly called
function then allocates room on the stack for its automatic and temporary variables. This is how recursive
functions in C can work. Each time a recursive function calls itself, a new stack frame is used, so one set of
variables doesn't interfere with the variables from another instance of the function.

® Heap, where dynamic memory allocation usually takes place. Historically, the heap has been located
between the uninitialized data and the stack.

and environment variables

high address } command-line arguments

heap
urninitialized data initialized to
{bss) zero by exec

mitialized data read from
program file

text by exsc

low address

Q.8 b) Write the prototypes of system library calls available to manipulate shared memory

Shared memory -1M

Shared memory allows two or more processes to share a given region of memory. This is the fastest
form of IPC, because the data does not need to be copied between the client and the server. The only
trick in using shared memory is synchronizing access to a given region among multiple processes. If
the server is placing data into a shared memory region, the client shouldn't try to access the data
until the server is done. Often, semaphores are used to synchronize shared memory access. (But as

Any two prototypes with explanation 2M*2=4M

The first function called is usually shmget, to obtain a shared memory identifier.

#include <sys/shm.h>

int shmget(key t key, size t size, int flag);

Returns: shared memory ID if OK, 1 on error

The shmctl function is the catchall for various shared memory operations.

#include <sys/shm.h>

int shmctl (int shmid, int emd, struct shmid ds *buf) ;

Returns: 0 if OQK, 1 on error

Once a shared memory segment has been created, a process attaches it to its address space by
calling shmat.

$include <sys/shm.h>

void *shmat (int shmid, const voild *addr, int flag);

Returns: pointer to shared memory segment if OK, 1 on error

	QP of 10CS62 Unix System Programming (ISE) May 2017 by Shilpa Mangesh Pande.pdf
	Scheme and solution for Improvement Test_2017 - Shilpa Mangesh Pande.pdf

