
CMR
INSTITUTE OF USN
TECHNOLOGY

Improvement Test – May 2017

Note: Answer any 5 questions. All questions carry equal marks. Total marks: 50

Marks
OBE

CO RBT

1. Define software architecture. Explain the factors that influence architecture. [10] CO1 L2

2. Explain the activities of software architecture development. [10] CO1 L3
3. What makes a “Good” architecture? [10] CO1 L3

4. a. Explain different implications of software architecture. [06] CO1 L5
b. Explain the importance of software architecture. [04] CO1 L2

5. Explain the structure and implementation steps and consequences of access control [10] CO4 L4

6. a. Explain implementation of master slave [06] CO4 L4

b. Explain consequences of master slave. [04] CO5 L3

7. Explain Whole part in detail. [10] CO5 L4

8. a. Explain structure of broker pattern. [06] CO5 L3

b. Explain dynamics of broker pattern. [04]

Sub: Software Architectures Code: 10IS81

Date: 25-05-17 Duration:
90

mins Max Marks: 50 Sem: VIII Branch: CSE

CMR
INSTITUTE OF SCHEME OF EVALUATION
TECHNOLOGY

Improvement Test – March 2017

Note: Answer any 5 questions. Total marks: 50

Question No Description Distribution of Marks Total Marks

1.

Definition of Software Architecture.
Diagram
Stakeholders
Developing Organization
Technical Experience
Architects Background

2M
2M
2M
2M
1M
1M

10M 10M

2.
Definition of Software process
List of Activities
Explanation

2M
1M
7M

7M 10M

3. Process Recommendation
Product Recommendation

5M
5M

10M 10M

4. a. Definition
Implications

2M
4M

6M 10M

b. Importance of SA 4M 4M

5.
Structure of Access Control
Implementation Steps
Consequences

4M
4M
2M

10M 10M

6.
a. Implementation steps of Master Slave 6M 6M 10M

b. Benefits of master slave
Liabilities of master slave

2M
2M

4M

7.
Whole part Structure
Implementation
Dynamics

3M
4M
3M

10M 10M

8.
a. Structure of broker(6 Cards 1 M each) 6M 6M 10M

b.
Any 1 dynamic diagram
Explanation

2M
2M

4M

Sub: Software Architectures Code: 10IS81

Date: 28/3/2017 Duration:
90

mins
Max

Marks: 50 Sem: VIII Branch: CSE

Mar
ks

OBE
C
O

RB
T

1
.

Define software architecture. Explain the factors that influence architecture.
The software architecture of a program or computing system is the structure or structures of
the system, which comprise software elements, the externally visible properties of those
elements, and the relationships among them.
An architecture is the result of a set of business and technical decisions. There are many
influences at work in its design, and the realization of these influences will change
depending on the environment in which the architecture is required to perform. Even with
the same requirements, hardware, support software, and human resources available, an
architect designing a system today is likely to design a different system than might have
been designed five years ago.
ARCHITECTURES ARE INFLUENCED BY SYSTEM STAKEHOLDERS

 Many people and organizations interested in the construction of a software system
are referred to as stakeholders. E.g. customers, end users, developers, project
manager etc.

 Figure below shows the architect receiving helpful stakeholder “suggestions”.

ARCHITECTURES ARE INFLUENCED BY THE DEVELOPING
ORGANIZATIONS.

 Architecture is influenced by the structure or nature of the development
organization.

 There are three classes of influence that come from the developing organizations:
immediate business, long-term business and organizational structure.

 An organization may have an immediate business investment in certain assets, such
as existing architectures and the products based on them.

 An organization may wish to make a long-term business investment in an
infrastructure to pursue strategic goals and may review the proposed system as one
means of financing and extending that infrastructure.

 The organizational structure can shape the software architecture.
ARCHITECTURES ARE INFLUENCED BY THE BACKGROUND AND
EXPERIENCE OF THE ARCHITECTS.

 If the architects for a system have had good results using a particular architectural
approach, such as distributed objects or implicit invocation, chances are that they
will try that same approach on a new development effort.

 Conversely, if their prior experience with this approach was disastrous, the architects

[10] CO
1

L2

may be reluctant to try it again.
 Architectural choices may also come from an architect’s education and training,

exposure to successful architectural patterns, or exposure to systems that have
worked particularly poorly or particularly well.

 The architects may also wish to experiment with an architectural pattern or
technique learned from a book or a course.

ARCHITECTURES ARE INFLUENCED BY THE TECHNICAL ENVIRONMENT
 A special case of the architect’s background and experience is reflected by the

technical environment.
 The environment that is current when an architecture is designed will influence that

architecture.
 It might include standard industry practices or software engineering prevalent in the

architect’s professional community.

2
.

Explain the activities of software architecture development.
Software process is the term given to the organization, ritualization, and management of
software development activities.
The various activities involved in creating software architecture are:
Creating the business case for the system

 It is an important step in creating and constraining any future requirements. o How
much should the product cost?

 What is its targeted market?
 What is its targeted time to market?
 Will it need to interface with other systems?
 Are there system limitations that it must work within?
 These are all the questions that must involve the system’s architects.
 They cannot be decided solely by an architect, but if an architect is not consulted in

the creation of the business case, it may be impossible to achieve the business goals.
Understanding the requirements

 There are a variety of techniques for eliciting requirements from the stakeholders. o
For ex:

 Object oriented analysis uses scenarios, or “use cases” to embody requirements.
 Safety-critical systems use more rigorous approaches, such as finite-state-machine

models or formal specification languages.
 Another technique that helps us understand requirements is the creation of

prototypes.
 Regardless of the technique used to elicit the requirements, the desired qualities of

the system to be constructed determine the shape of its structure.
Creating or selecting the architecture

 In the landmark book The Mythical Man-Month, Fred Brooks argues forcefully and
eloquently that conceptual integrity is the key to sound system design and that
conceptual integrity can only be had by a small number of minds coming together to
design the system's architecture.

[10] CO
1

L3

Documenting and communicating the architecture
 For the architecture to be effective as the backbone of the project’s design, it must be

communicated clearly and unambiguously to all of the stakeholders.
 Developers must understand the work assignments it requires of them, testers must

understand the task structure it imposes on them, management must understand the
scheduling implications it suggests, and so forth.

Analyzing or evaluating the architecture
 Choosing among multiple competing designs in a rational way is one of the

architect’s greatest challenges.
 Evaluating an architecture for the qualities that it supports is essential to ensuring

that the system constructed from that architecture satisfies its stakeholders needs.
 Use scenario-based techniques or architecture tradeoff analysis method (ATAM) or

cost benefit analysis method (CBAM).
Implementing the system based on the architecture

 This activity is concerned with keeping the developers faithful to the structures and
interaction protocols constrained by the architecture.

 Having an explicit and well-communicated architecture is the first step toward
ensuring architectural conformance.

Ensuring that the implementation conforms to the architecture
 Finally, when an architecture is created and used, it goes into a maintenance phase.
 o Constant vigilance is required to ensure that the actual architecture and its

representation remain to each other during this phase.
3
.

What makes a “Good” architecture?
Given the same technical requirements for a system, two different architects in different
organizations will produce different architectures, how can we determine if either one of
them is the right one?
We divide our observations into two clusters: process recommendations and product (or
structural) recommendations.
Process recommendations are as follows:

 The architecture should be the product of a single architect or a small group of
architects with an identified leader.

 The architect (or architecture team) should have the functional requirements for the
system and an articulated, prioritized list of quality attributes that the architecture is
expected to satisfy.

 The architecture should be well documented, with at least one static view and one
dynamic view, using an agreed-on notation that all stakeholders can understand with
a minimum of effort.

 The architecture should be circulated to the system’s stakeholders, who should be
actively involved in its review.

 The architecture should be analyzed for applicable quantitative measures (such as
maximum throughput) and formally evaluated for quality attributes before it is too
late to make changes to it.

 The architecture should lend itself to incremental implementation via the creation of
a “skeletal” system in which the communication paths are exercised but which at
first has minimal functionality. This skeletal system can then be used to “grow” the
system incrementally, easing the integration and testing efforts.

 The architecture should result in a specific (and small) set of resource contention
areas, the resolution of which is clearly specified, circulated and maintained.

Product (structural) recommendations are as follows:
 The architecture should feature well-defined modules whose functional

responsibilities are allocated on the principles of information hiding and separation
of concerns.

 Each module should have a well-defined interface that encapsulates or “hides”
changeable aspects from other software that uses its facilities. These interfaces

[10] CO
1

L3

should allow their respective development teams to work largely independent of
each other.

 Quality attributes should be achieved using well-known architectural tactics specific
to each attribute.

 The architecture should never depend on a particular version of a commercial
product or tool.

 Modules that produce data should be separate from modules that consume data. This
tends to increase modifiability.

 For parallel processing systems, the architecture should feature well-defined
processors or tasks that do not necessarily mirror the module decomposition
structure.

 Every task or process should be written so that its assignment to a specific processor
can be easily changed, perhaps even at runtime.

 The architecture should feature a small number of simple interaction patterns.
4
.
a
.

Explain different implications of software architecture.
The software architecture of a program or computing system is the structure or structures of
the system, which comprise software elements, the externally visible properties of those
elements, and the relationships among them.
Let's look at some of the implications of this definition in more detail. Architecture defines
software elements

 The definition makes clear that systems can and do comprise more than one
structure and that no one structure can irrefutably claim to be the architecture.

 The definition implies that every computing system with software has a software
architecture because every system can be shown to comprise elements and the
relations among them.

 The behavior of each element is part of the architecture insofar as that behavior can
be observed or discerned from the point of view of another element. Such behavior
is what allows elements to interact with each other, which is clearly part of the
architecture.

 The definition is indifferent as to whether the architecture for a system is a good one
or a bad one, meaning that it will allow or prevent the system from meeting its
behavioral, performance, and life-cycle requirements.

[06] CO
1

L5

b
.

Explain the importance of software architecture.
There are fundamentally three reasons for software architecture’s importance from a
technical perspective.

 Communication among stakeholders: software architecture represents a common
abstraction of a system that most if not all of the system’s stakeholders can use as a
basis for mutual understanding, negotiation, consensus and communication.

 Early design decisions: Software architecture manifests the earliest design
decisions about a system with respect to the system's remaining development, its
deployment, and its maintenance life. It is the earliest point at which design
decisions governing the system to be built can be analyzed.

 Transferable abstraction of a system: software architecture model is transferable
across systems. It can be applied to other systems exhibiting similar quality
attribute and functional attribute and functional requirements and can promote
large-scale re-use.

[04] CO
1

L2

5
.

Explain the structure and implementation steps and consequences of access control.
Structure:
Original
Implements a particular service
Client
Responsible for specific task ,To do this, it involves the functionality of the original in an
indirect way by accessing the proxy.
Proxy

[10] CO
4

L4

Offers same interface as the original, and ensures correct access to the original. To achieve
this, the proxy maintains a reference to the original it represents. Usually there is one-to-one
relationship b/w the proxy and the original.
Abstract original
Provides the interface implemented by the proxy and the original. i.e, serves as abstract base
class for the proxy and the original.

The OMT Diagram is as shown below

Implementation:
1. Identify all responsibilities for dealing with access control to a component Attach
these responsibilities to a separate component the proxy.
2. If possible introduce an abstract base class that specifies the common parts of the
interfaces of both the proxy and the original.
Derive the proxy and the original from this abstract base. 3. Implement the proxy’s
functions
To this end check the roles specified in the first step
4. Free the original and its client from responsibilities that have migrated into the proxy.
5. Associate the proxy and the original by giving the proxy a handle to the original. This
handle may be a pointer a reference an address an identifier, a socket, a port, and so on.
6. Remove all direct relationships between the original and its client Replace them by
analogous relationships to the proxy.
Consequences:
The Proxy pattern provides the following Benefits:

 Enhanced efficiency and lower cost
The Virtual Proxy variant helps to implement a 'load-on-demand' strategy. This
allows you to avoid unnecessary loads from disk and usually speeds up your
application

 Decoupling clients from the location of server components
By putting all location information and addressing functionality into a Remote Proxy

variant, clients are not affected by migration of servers or changes in the networking
infrastructure. This allows client code to become more stable and reusable.

 Separation of housekeeping code from functionality.
A proxy relieves the client of burdens that do not inherently belong to the task the
client is to perform.

The Proxy pattern has the following Liabilities:
 Less efficiency due to indirection

All proxies introduce an additional layer of indirection.
 Over kill via sophisticated strategies

Be careful with intricate strategies for caching or loading on demand they do not
always pay.

6
.
a.Explain implementation of master slave

1. Divide work:
Specify how the computation of the task can be split into a set equal sub tasks. Identify the
sub services that are necessary to process a subtask.
2. Combine sub-task results
Specify how the final result of the whole service can be computed with the help of the
results obtained from processing individual sub-tasks.
3. Specify co operation between master and slaves

 Define an interface for the subservice identified in step1 it will be implemented by
the slave and used by the master to delegate the processing of individual subtask.

 One option for passing subtasks from the master to the slaves is to include them as a
parameter when invoking the subservice.

 Another option is to define a repository where the master puts sub tasks and the
slaves fetch them.

4. Implement the slave components according to the specifications developed in previous
step.
5. Implement the master according to the specifications developed in step 1 to 3

 There are two options for dividing a task into subtasks.
The first is to split work into a fixed number of subtasks.
The second option is to define as many subtasks as necessary or possible.

 Use strategy pattern to support dynamic exchange and variations of algorithms for
subdividing a task.

[06] CO
4

L4

b
.

Explain consequences of master slave.
The Master-Slave design pattern provides several Benefits:

 Exchangeability and extensibility
By providing an abstract slave class, it is possible to exchange existing slave
implementations or add new ones without major changes to the master.

 Separation of concerns
The introduction of the master separates slave and client code from the code for
partitioning work, delegating work to slaves, collecting the results from the slaves,
computing the final result and handling slave failure or inaccurate slave results.

 Efficiency
The Master-Slave pattern for parallel computation enables you to speed up the
performance of computing a particular service when implemented carefully

The Master-Slave design pattern has certain Liabilities:
 Feasibility

It is not always feasible
 Machine dependency

It depends on the architecture of the m/c on which the program runs.
 Hard to implement

Implementing Master-Slave is not easy, especially for parallel computation.
 Portability

Master-Slave structures are difficult or impossible to transfer to other machines.

[04]CO
5

L3

7
.

Explain Whole part in detail.
Whole-part design pattern helps with the aggregation of components that together form a
semantic unit. An aggregate component, the whole, encapsulates its constituent components,
the parts, organizes their collaboration, and provides a common interface to its functionality.
Direct access to the parts is not possible.
Structure:
The Whole-Part pattern introduces two types of participant:
Whole

 Whole object represents an aggregation of smaller objects, which we call parts.
 It forms a semantic grouping of its parts in that it co ordinates and organizes their

collaboration.
 Some methods of whole may be just place holder for specific part services when

such a method is invoked the whole only calls the relevant part services, and returns
the result to the client.

Part
 Each part object is embedded in exactly one whole. Two or more parts cannot share

the same part. Each part is created and destroyed within the life span of the whole.

Dynamics:
The following scenario illustrates the behavior of a Whole-Part structure. We use the two-
dimensional rotation of a line within a CAD system as an example. The line acts as a
Whole object that contains two points p and q as Parts. A client asks the line object to
rotate around the point c and passes the rotation angle as an argument.

The scenario consists of four phases:
 A client invokes the rotate method of the line L and passes the angle a and the

rotation center c as arguments.
 The line L calls the rotate method of the point p.
 The line L calls the rotate method of the point q.
 The line L redraws itself using the new positions of p I and q I as endpoints.

[10] CO
5

L4

Implementation:
1. Design the public interface of the whole

 Analyze the functionality the whole must offer to its clients. Only consider the
clients view point in this step.

 Think of the whole as an atomic component that is not structured into parts.
2. Separate the whole into parts, or synthesize it from existing ones.

 There are two approaches to assembling the parts either assemble a whole ‘bottom-
up’ from existing parts, or decompose it ‘top-down’ into smaller parts.

 Mixtures of both approaches is often applied
3. If you follow a bottom up approach, use existing parts from component libraries or
class libraries and specify their collaboration.
4. If you follow a top down approach, partition the Wholes services into smaller
collaborating services and map these collaborating services to separate parts.
5. Specify the services of the whole in terms of services of the parts.

 Decide whether all part services are called only by their whole, or if parts may also
call each other. Two are two possible ways to call a Part service:

 If a client request is forwarded to a Part service, the Part does not use any knowledge
about the execution context of the Whole, relying on its own environment instead.

 A delegation approach requires the Whole to pass its own context information to the
Part.

6. Implement the parts
If parts are whole-part structures themselves, design them recursively starting with step1 . if
not reuse existing parts from a library.
7. Implement the whole
Implement services that depend on part objects by invoking their services from the whole.

8
.
a.Explain structure of broker pattern.

The broker architectural pattern comprises six types of participating components.
Server

 Client
 Client side proxy
 Server side proxy
 Broker
 Bridge

[06]
CO
5

L3

b
.

Explain dynamics of broker pattern.
Scenario illustrates the behavior when a client sends a request to a local server. In this
scenario we describe a synchronous invocation, in which the client blocks until it gets a
response from the server. The broker may also support asynchronous invocations, allowing
clients to execute further tasks without having to wait for a response.

[04]

