

Internal Assesment Test - III

Sub:	OPERATIONAL AMPLIFIERS AND LINEAR ICS Cod							le:	15EE46		
Date:	31 / 05/ 2017	Duration:	90 mins	Max Marks:	50	Sem:	IV	Bra	nch:	EEE	
Note:(i)Answer either Q1 completly or Q2 completely (ii)Q3,Q4 and Q5 is co									mpuls	ory	
									Mark	s CO	RBT
1 (a)	(a) List the characteristics of ideal Op-amp. Demonstrate the working of Op-amp as inverting and								[10]	C406.1	L1
	on-inverting amplifier with circuit diagram and design.										
1(b)	Discuss the operation of Op-amp as voltage series and voltage shunt feedback amplifier. Derive								[10]	C406.1	L1
	the closed loop gain, input resistance and output resistance of the same.										
OR											
2(a)	Design a inverting Schmitt trigger to have UTP=+3V and LTP=-5V using an Op-amp uA741 IC								[10]	C406.4	L3
	rith supply voltage Vcc=±15V.										
2(b)	Demonstrate with circuit diagram voltage to current converter with grounded load and current to								[10]	C406.5	L1
	voltage converter.										
_	xplain the working of PLL with block diagram. Explain the function of each block in detail.								[10]	C406.6	L1
4	Explain the working of Astable multivibrator using 555 timer with internal diagram and required							ired	[10]	C406.6	L2
	waveforms.						- 1-				
5	List the different applications of 555 timer. Explain any 2 applications in detail.								[10]	C406.6	L2
]		

Answer

1(a)

The characteristies of an ideal op-amp are-

→ Open Loop voltage gain $Ao_1 = \infty$ → Imput impedance $R_1^* = \infty$ → output impedance $R_0 = 0$ → Band width $BW = \infty$ → zero offset i.e $V_0 = 0$ if $V_1 = V_2 = 0$

Non inverting amplifier

Applying KCL at part no. 2 we get,
$$R_2 = I_{R3}$$

$$\frac{\sqrt{R_3}}{R_3} = \frac{V_0 - V_i}{R_2}$$
or, $\frac{\sqrt{V_i}}{R_3} = \frac{V_0 - V_i}{R_2}$
or, $\frac{\sqrt{V_i}}{R_3} = \frac{V_0}{R_2}$
or, $\frac{\sqrt{V_0}}{V_i} = R_2$. $\frac{R_2 + R_3}{R_2 R_3} = \left(1 + \frac{R_2}{R_3}\right)$

$$\therefore A_V = \frac{\sqrt{V_0}}{V_i} = \left(1 + \frac{R_2}{R_3}\right)$$

Inverting amplifier

Now, applying KCL at node 2 we get,

$$\frac{V_1^2}{R_1} = \frac{0 - V_0}{R_2}$$
or,
$$Av = \frac{V_0}{V_1^2} = -\frac{R_2}{R_1}$$

$$\therefore Av = -\frac{R_2}{R_1}$$

1(b)

From fig
$$N_1 = V_{1N}$$

 $N_2 = V_1^2 = V_0 \times R_1$
 $R_1 + F_1^2$
 $V_0 = A \left[V_{1N}^2 - \frac{R_1 V_0}{R_1 + R_1^2} \right]$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R_1}{R_1 + R_1^2} \right] = AV_{1N}^2$
 $V_0 = A \left[\frac{R$

$$AF = \frac{A(R_1 + R_F)}{R_1 + R_F + AR_1} = \frac{A\left(\frac{R_1 + R_F}{R_1 + R_F}\right)}{\frac{R_1 + R_F}{R_1 + R_F}} = \frac{A(R_1 + R_F)}{\frac{R_1 + R_F}{R_1 + R_F}} = \frac{A(R_1 + R_F)}{\frac{R_1 + R_F}{R_1 + R_F}} = \frac{A}{1 + AR_1} = \frac{A}{1 + AR_2} = \frac{A}{1 + AR_3} = \frac{A}{$$

Voltage Shunt feedback amplified

closed loop voltage gain

$$\frac{V_{in}-V_2}{R_1}=\frac{V_2-V_0}{R_F}$$

8

$$VTP = +3V \quad LTP = -5V \quad Vcc = \pm 15V$$

$$R_3 = UTP = \frac{3}{11} = \frac{3}{100\mu R} = \frac{3}{6 \times 10} \times 10^{-10} \cdot 10^{-1$$

$$3 = \frac{14 \times 5.61 \times 1}{R_1 + 5.61 \times 1}$$

$$3(R_1 + 5.61 \times 1) = 14 \times 5.61 \times 1$$

$$3R_1 + 16.8 \times 1 = 70.4 \times 10^3$$

$$3R_1 = 61.6 \times 1$$

$$R_1 = 61.6 \times 1$$

$$R_2 + 5.61 \times 1$$

$$R_2 + 5.61 \times 1$$

$$SR_2 + 28 \times 1 = 78.4 \times 2$$

$$SR_4 = 50.4$$

$$R_2 = 101 \times 1$$

2(b)voltage to current converters

Current to voltage converters
$$I_o = \frac{V_{\text{ref}}}{R_1} \left(\frac{D_7}{2} + \frac{D_6}{4} + \frac{D_5}{8} + \frac{D_4}{16} + \frac{D_3}{32} + \frac{D_2}{64} + \frac{D_1}{128} + \frac{D_0}{256} \right)$$
(7-22a)

$$I_0 = \frac{V_{ref}}{R_1} \left(\frac{D7}{2} + \frac{D6}{4} + \frac{D5}{8} + \frac{D4}{16} + \frac{D3}{32} + \frac{D2}{64} + \frac{D1}{128} + \frac{D0}{256} \right)$$

Figure 7-20 DAC using current-to-voltage converter.

