CMR INSTITUTE OF TECHNOLOGY

USN										
-----	--	--	--	--	--	--	--	--	--	--

Internal Assesment Test – III

			Internal	l Assesment Te	st – III						CM
Sub:	Operations Res	search						Code:	10E	E661	
Date:	30/05/2017	Duration:	90 mins	Max Marks:	50	Sem:	6	Branch:	EEF	E	
			Ansv	wer any 5 ques	tions						
									M1 .	OF	BE
									Marks	СО	RB'
	a) A factory	is engaged in	manufac	turing 3 produc	ets A, B	and C.	Each 1	product			
	undergoes	s three proces	ses, nam	nely, turning, g	grinding	g and a	ssembl	y. The			
	turning, g	grinding and a	ssembly	time for 1 unit	of pro	duct A	is 2 h	ours, 3			
	hours and	1 hour respec	tively; fo	r product B; the	e proces	ssing tir	ne for p	product			
	B is 3 h	ours, 1 hour	and 3 l	nours for turni	ing, gri	nding	and as	sembly			
	•	•	Ū	for product C							
				oly respectively	_		_				
			_	ectively. Assum	_				[05]		
				240 hours of	assemb	oly time	e is av	ailable,			
		a mathematic									
				tory that produc							
	*			The basic raw r							
1		-		mum availabili	•		•			CO1	L
		=	_	ments of raw							
		=		Market survey h				=			
		-		t exceed that o hat maximum o		-	-	•			
		<u> </u>		sale price is Rs				•			
				much interior			_		[05]		
		=		rofit? Formulate		_					
	RAV	=		INTERIOR		ILABI		7			
	MATER			,							
	A		1	2		6		_			
	В		2	1		8		1			
	Solve the followi	ng problem by	Simplex	Method:							
		ax. $Z = X_1 + 2X$									
^	Su	ibject to: X_1+		3≤10							_
2			$X_2 \leq 5$							CO3	L
		$X_1 \leq$		0					[10]		
		X_1 ,	$X_2, X_3 \geq$	U							
	1								1	1	I

	Solve the foll		m by Big M m X ₁ +15X ₂ +20X					
			$2X_1 + 4X_2 + 6X_3$			[10]		
3			$3X_1 + 9X_2 + 6X_3$			[10]	CO3	L3
			$X_1, X_2, X_3 \ge 0$	_				
			1, 2, 3 = 1					
	Find the dua l i.	of the follow \mathbf{Max} . $\mathbf{Z} = \mathbf{X}_1$		gramming Prob	blems			
		Subject to:	$-2X_1 + X_2 + 3X_3$	≤ 10				
			$2X_1 + 3X_2 + 4X_1$			[03]		
			$X_1, X_2, X_3 \ge 0$	0				
	ii.	$\mathbf{Max.} \ \mathbf{Z} = 3\mathbf{X}$	$X_1 + 5X_2$					
		Subject to:	$2X_1 + 6X_2 \le 50$)		[04]		
,			$3X_1 + 2X_2 \le 35$	5		[01]	000	
4			$5X_1 - 3X_2 \le 10$)			CO3	L3
			$X_2 \le 20$					
			$X_1, X_2 \ge 0$					
	iii.	Min. Z= 5X	$1+4X_2-3X_3+6$	$5X_4$		[02]		
		Subject to:	$6X_1 + 5X_2 - 3X_3$	$+7X_4 \ge 150$		[03]		
			$X_1+3X_2+2X_3$	≤ 25				
			$X_1, X_2, X_3 X_4$	≥ 0				
	Draw a neat i	network for the	e following de	tails:				
	a)		_					
	i.	A, B and C a	are starting act	ivities.		[00]		
	ii.		can start if A is	•		[03]		
	iii.	G can start a	ifter B and D a	are complete				
	iv.	H can start a	fter C and E a	re complete				
	b)			1	7			
			Activity	Precedence				
			A	-	-			
5			В	A		[02]	CO4	L4
			С	A				
			D	В				
			E	В				
			F	C, D				
			G	E, F				
	1							

	c) A proje	ect consists of th	e following activ	vities:					
	i.	A & B are starti	-	. 141001					
	ii.	A controls C, D							
	iii.	B controls F &							
	iv.	G depends on C							
	V.	H depends on E							
	v. vi.	E & F control J				[[05]		
	vii.	L depends on K							
	viii.	M is controlled	by L						
	A project sche		owing characteri						
		A	activity Tim						
			(in						
			days	<u>s)</u>					
			1-2 4						
			1-3 1 2-4 1						
			2-4 <u>1</u> 3-4 <u>1</u>						
			3-5 6						
6			4-9 5				[10]	CO4	L4
Ü			5-6 4			'	[10]	001	
			5-7 8						
			6-8 1						
			7-8 2						
			8-10 5						
			9-10 7						
					d the duration. Al				
		y Start Time, Ear	rly Finish Time,	Latest Start Tim	e, Latest Finish Tin	ne			
	and Floats.	a project consis	sting of activitie	c A to K are cu	mmarized in the ta	hle			
	below.	a project consis	sting of activitie	s it to it are su	innarized in the ta	OIC			
	Activity	Immediate		RATION (IN WI					
		Predecessor	OPTIMISTIC TIME	MOST LIKELY TIME	PESSIMISTIC TIME				
	A	-	6	7	8				
	В	-	1	2	9				
	С	-	1	4	7				
7	D	A	1	2	3			CO4	L4
-	Е	A, B	1	2	9		-103		
	F	C	1	5	9		[10]		
	G	C	2	2	8				
	H	E, F	4	4	4				
	I	E, F	4	4	10				
	J	D, H	2	5	14				
	K	I, G	2	2	8				
	K	I, G	2	2	8				

CO4	Ι /
CO4	L4
	.04

SOLUTION BANK FOR IAT-3

(1)

(a) Let X1, X2 and X3 be the production quantitie

of products A, B& C respectively.

Zmax = 20x1+40x2+20x3

Subject to constraints:

 $0 \times_{1} + 3 \times_{2} + \times_{3} \le 800$ $0 \times_{1} + \times_{2} + 3 \times_{3} \le 800$ $0 \times_{1} + \times_{2} + 3 \times_{3} \le 800$ $0 \times_{1} + 3 \times_{2} + \times_{3} \le 240$

(b) Let X, & X2 be the requirement of exterior & interior paint.

Zmax = 3000x, + 2000 x2

Constraints: $X_1 + 8X_2 \le 6$

2x,+x2 = 8

 $\times_2 - \times_1 \leq 1$.

 $\chi_1 \leq 2$.

(2)

Max
$$Z = X_1 + 2X_2 + 3X_3 + 0S_1 + 0S_2$$

 $X_1 + 2X_2 + 3X_3 + S_1 = 10$
 $X_1 + X_2 + S_2 = 5$

	CDa	C	4 .	2	3	0	0	Soln	Ratio
	Coi	Basic Va	X,	X2	X3	Si	S ₂	1306	izay w
	O	Sı	1	2	3	1,,	0	10	10/3
	O	S2	L .	Ţ		0	, 1	5	
		Z_{λ}	0	0	0 p	0	0		
.13		C: -Z;	1	2	- 3	1.	0		

eB:	Basicv	X	×2	3 X3	O S ₁	0	Soln	Rahio
3	X ₃	1/3	2/3	7	1/3		10/3	
0	<u> </u>	\ \ \	<u> </u>		0	T	5	
	S_2	1	2	3	1	0		
	C; -Z;	0	0	0	-1	0	<i>i i</i>	

Optimolity is attained

$$X_1 = 0, X_2 = 0, X_3 = \frac{10}{3}$$

 $X_1 = 0, X_2 = 0, X_3 = \frac{10}{3}$
 $X_1 = 0, X_2 = 0, X_3 = \frac{10}{3}$
 $X_1 = 0, X_2 = 0, X_3 = \frac{10}{3}$

(3) $M_{1N} = 10 \times 1 + 15 \times 2 + 20 \times 3 + 0 \times 1 + 0 \times 2 + m + m + 2 \times 2 + 6 \times 3 - 5 + 4 \times 2 = 30$ $2 \times 1 + 4 \times 2 + 6 \times 3 - 5 + 4 \times 2 = 30$ $3 \times 1 + 4 \times 2 + 6 \times 3 - 5 + 4 \times 2 = 30$

CB°L	Cj	(Q) X1	US X2	20 ×3	0	0	MAI	M A ₂	Sol.	Raho
M	Aa	2	4	6	-7	0	1	0	24	6
	•		14.2			- 48 - 3		2		
M	A2	3	9	6	a. O	-1	0	1	30	3%.
ř	Z	5M	13 H	12M	-M	-M	М	М	ė	
	Cz-Zj	10 - 5H	15- 13M	20- 12M	М	М	0	0	2	

CBi	Basic	10 X ₁	15 X ₂	20 X ₃	Sı	0	M A	Sol	Ratio
Bu	AL	2/3	O	10/3	-1	4/9	1	32/3	
X ₂	15	1/3		2/3	0	-1/9	0	10/3	
	Z;	-2 <u>H</u> -5 3 -2 <u>H</u> +5	-15 0	-10M-10 3 -10M+10	M M	-4H+5 9 3 -4H-5	-H		

						x x		
CQ.	C'o	10	.15	20	0	O	Sol.	Ratio
COI	BV	X,1	X2	Xz	5,	S2	00 1.	raco
20	Xz	1/5	Ō ,	1	-3/10	2/15	16/5	
15	X 2	1/5	\	0	1/5	-145	6/5).
	,			, , , , , , , , , , , , , , , , , , ,	1 1		ŝ	
	Zi	-7	-15	-20	-9	1/3		
4	C-2-2.	17	0	-O	+9	1/3	1	. #

$$x_3 = 16/5$$
, $x_2 = 6/5$
Min $z = 82$.

CMR

(H)

- (i) $min \frac{3}{3} 10 \frac{1}{3} + \frac{5}{2} \frac{2}{2} \frac{1}{2}$ $\frac{2y_1 + 2y_2 \ge 1}{y_1 + 3y_2 \ge -2}$ $\frac{3y_1 + 4y_2 \ge 3}{2}$
- (ii) $min Z = 50y_1 + 35y_2 + 10y_3$ $8y_1 + 3y_2 + 5y_3 \ge 3$ $6y_3 + 2y_2 - 3y_3 + y_4 \ge 5$

6)

(4)

(8)

