Improvement Test | Sub: | DIGITAL COMMUNICATION Code: | | | 10EC/TE61 | | | | |--------------------------------|---|-------|--------|-----------|--|--|--| | Date: | 29 / 05 / 2017 Duration: 90 mins Max Marks: 50 Sem: VI Branch | ECE(| (D)/TC | E(B) | | | | | Answer Any FIVE FULL Questions | Marks | СО | RBT | | | | | 1 | Explain duobinary coding with precoder and without precoder. | [10] | CO2 | L2 | | | | | 2(a) | The binary data 01010101 is applied to a duo binary system. i. Construct the Duobinary coder output and the corresponding receiver output without precoder. ii. Construct the Duobinary coder output and the corresponding receiver output with precoder. | [05] | CO2 | L2 | | | | | 2(b) | The binary data 10101010 is applied to a modified duobinary system. i. Construct the modified duobinary coder output and the corresponding receiver output without precoder. ii. Construct the modified duobinary coder output and the corresponding receiver output with precoder. | | | | | | | | 3 | With neat block diagrams, explain coherent binary ASK system. Derive an expression for probability of error. | [10] | CO3 | L3 | | | | | 4 | With neat block diagrams, explain coherent binary PSK system. Derive an expression for probability of error. | [10] | CO3 | L3 | | | | | 5(a) | Plot the QPSK waveform for the binary data 01101000 clearly showing the waveforms for even indexed bits and odd indexed bits. | [05] | CO3 | L2 | | | | | 5(b) | Obtain the differentially encoded sequence for the binary data 10010011. Plot the DPSK signal. | [05] | CO3 | L2 | | | | | 6 | Demonstrate the properties of maximum length PN sequence obtained from the shift register structure as shown in Fig 6. Consider the initial states of shift registers as 1000. | [10] | CO4 | L2 | | | | | 7 | Figure 6. PN Sequence generator | F4.03 | GC 1 | | | | | | 7 | With neat block diagrams and necessary equations, explain direct sequence spread spectrum. | [10] | CO4 | L2 | | | | | 8 | With neat block diagrams and necessary equations, explain frequency hop spread spectrum. | [10] | CO4 | L2 | | | | 1 Block diagram of duobinary coder without precoder. $$\alpha_{K} = \begin{cases} 1v & \text{if } b_{K} = 1 \\ -1v & \text{if } b_{K} = 40 \end{cases}$$ $$C_{K} = a_{K} + a_{K-1}$$ $$H(f) = \left[1 + e^{-\frac{1}{2}\pi f} T_{b}\right] T_{b}, -\frac{R_{b}}{2} \leq f \leq \frac{R_{b}}{2}$$ $$h(t) = sinc(R_bt) + sinc(R_b(t-T_b))$$ Duobinary coder with precoder. 3/8 $$d_{k} = b_{k} \oplus d_{k-1}$$ $$a_{k} = PAM(d_{k})$$ $$C_{k} = a_{k} + a_{k-1}$$ $$C_{k} = \begin{cases} \pm 2V, & \text{if } b_{k} = 0 \\ 0V, & \text{if } b_{k} = 1 \end{cases}$$ $$S_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_c t), \quad 0 \le t \le T_b$$ $$S_2(t) = 0 \phi_1(t)$$ ## Transmitter ## Receiver $$\Re(t) \longrightarrow \Re \longrightarrow \Im$$ $$\Rightarrow \operatorname{Decision} \longrightarrow \operatorname{device} \operatorname{device$$ 4/8 $$P_{e}(0) = \int_{\infty}^{\infty} \int_{X_{1}}^{\infty} (x_{1}/o) dx_{1}$$ $$= \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{\infty}^{\infty} dx_{1}$$ $$= \int_{\infty}^{\infty} \int_{\infty$$ $$f_{c} = \frac{1}{T_{b}}$$ $$S_{2}(t) = -\sqrt{\frac{2E_{b}}{T_{b}}} \cos(2\pi f_{c}t), o \leq t \leq T_{b}$$ $$\phi_{1}(t) = \sqrt{\frac{2}{T_{b}}} \cos(2\pi f_{c}t), o \leq t \leq T_{b}$$ $$S_{1}(t) = \sqrt{E_{b}} \phi_{1}(t),$$ $$S_{2}(t) = -\sqrt{E_{b}} \phi_{1}(t)$$ $$S_{2}(t) = -\sqrt{E_{b}} \phi_{1}(t)$$ Transmitter Receiver $$\pi(t) = \int_{0}^{T_{b}} \frac{x_{1}}{\sqrt{21/0}} = \int_{N_{0}}^{T_{b}} \frac{x_{1}}{\sqrt{11/0}} \frac{\text{Decision}}{\sqrt{21/0}} = \int_{N_{0}}^{T_{b}} \frac{x_{1}}{\sqrt{11/0}} \frac{\text{Decision}}{\sqrt{11/0}} = \int_{N_{0}}^{T_{b}} \frac{x_{1}}{\sqrt{11/0}} \frac{x_{1}}{\sqrt{11/0}} = \int_{N_{0}}^{T_{0}} \frac{x_{1}}{\sqrt{11/0}} \frac{x_{2}}{\sqrt{11/0}} = \int_{N_{0}}^{T_{0}} \frac{x_{1}}{\sqrt{11/0}} \frac{x_{1}}{\sqrt{11/0}} = \int_{N_{0}}^{T_{0}} \frac{x_{1}}{\sqrt{11/0}} \frac{x_{2}}{\sqrt{11/0}} = \int_{N_{0}}^{T_{0}} \frac{x_{1}}{\sqrt{11/0}} \frac{x$$ $$P_{e}(0) = \int_{0}^{\infty} f_{x_{1}}(x_{1/0}) dx_{1}$$ $$P_{e} = \frac{1}{2}P_{e}(0) + \frac{1}{2}P_{e}(1)$$ $$= \frac{1}{2}exfc\left(\sqrt{\frac{Eb}{No}}\right)$$ THE TOTAL THE SET OF T 5 | CIK
0
1
2 | FFI
I
O | 0 0 | 3 FF4
0 0
1 0 | |--------------------|---------------|------------|---------------------| | 3 | 1 | 0 | 0 0 | | 5 | 0 | 1 | , 0 | | 6 | 1 | | 1 1 | | 7 | O | 1 | 0 1 | | 8 | 1 | \bigcirc | 1 0 | | 9 | 1 | 1 | 0 | | 10 | \ | 1 | 10 | | 11 | 1 | 1 | 1 1 | | 12 | 0 | 1 | 1 1 | | 13 | 0 | Ó | 0 1 | | 14 | 0 | 0 | | | 15 | 1 | 0 | 0 0 | Properties: - 1. Run property - 2. Balance property - 3. Autocorrelation property DSSS Transmitter $$b(t) \xrightarrow{>} \mathfrak{R}(t)$$ $$c(t)$$ $$\alpha(t) = b(t)c(t)$$ $$S(t) = \alpha(t) + j(t)$$ DSSS Receiver $$s(t) \rightarrow \text{Q} \rightarrow \text{LPF} \Rightarrow$$ $c(t)$ $$S(t) c(t) = [x(t)+j(t)]c(t)$$ $$= [b(t)c(t) + j(t)]c(t)$$ $$=b(t)+j(t)c(t).$$ ## FHSS Receiver