CMR
INSTITUTE OF
TECHNOLOGY

Imrovement Test -May 2017

Sub:		Infor	mation The	eory and Coding	;			Code:	10TE65
Date:	_/05/2017	Duration:	90 mins	Max Marks:	50	Sem:	6A&B	Branch:	TCE

Answer Any Five Full Questions

		Mar	OF	BE.	ŀ
		ks	CO	RB	į
				T	1
1	Write a short note on <i>RS codes</i> and <i>GOLAY codes</i> .	10	CO	L1	į
			1 5 1		1

x Reed Solomon codu
. Es codes are a class of maximum distance so codes.
. Proposed by I.s. REED & G. solomon in - the year
· Non Winary Codu
A clan of non binary BCH codes.
· The generobusing in her brocomed frequencial in
codes pratically prominent in recent years, becau
- Icapital deoding computations.
*. To show that Rs codes as special case of
let an consider the primitive grany rett codes
length n=qm-1 and the extension of tield of
invoked for locating rook of generator polynom
let m=1, we get n=q-1, which governs -1he st
· For the primitive RCH codes, the generator po
$q(x) = \text{lem} [\phi_{xi}(x), \phi_{xi+1}(x), \dots, \phi_{xi+s-1}(x)]$

Where $\phi_{\alpha i}(\alpha) = minimal polynomial of element$ $\alpha^{i} = powers of a primitive element of second value of dmin.$

Now with m=1, however, the minimal polynom of elements in GF(a) are tirst degree of the tor que reduces to

 $g(x) = (x - x^{i})(x - x^{i+1}) \dots (x - x^{i+8} - \ell)$

This is a polynomial over STEAN GF(Q) of (S-1). Thus n-k=8-1-lor R-s codes.

 $\vdots \quad n-k=\xi^{-1} \longrightarrow \widehat{\mathfrak{G}}$

Since These are BCH cooks, the true minime must be at least.

dmin ≥ 8= n-k+1 => dmin=n-k+1. -

i.e., for a Rs code, drain= n-k+1.

The value of k may be any integer e In eq. O & O -the starting exponent in - he s rooks, is completly arbitrary and in commonly t GOLAY CODES

GOLAY CODES

Golay Codes are (43,18) binary codes capable

Upto 3 corons in a block of 93 bil corde word

It is a perfect code because it satisfies the be

with equality sign - for 1=3.

 $2\quad \text{Write a note on } \textit{Shortened cyclic codes} \text{ and } \textit{Burst error correcting codes}.$

_	_	_	_	_	_	_	_	_	_	_	_	_
	(1	()		ŀ		I	,	3	,	
		_				ŀ				_		
		L)			i						

10

shortered eyelic Codes

The eyelic codes have the generator polynomial . We factor of anti.

But the polynomial 20-11 has relatively the directly the cyclic codes to result overcome this difficulty & to increase the constructed, and offer wed in shortened torm.

In the shortened torm, the last it informat are always of i.e., the last it wis of the code! I will other a padding codes.

These wite are not transmitted, the decoder the exportenced code equilic codes can decode the deshortened code esimply by padding the received (n-i) tuples of these, for a given (n-t) equilic code, it is always construct a (n-i, t-i) shortened equilic codes.

The shortened eyelic codes are a subject of the almost and exclined a honce its almost a common which it is derived a honce its almost a comparation the original co

Advantaqu

The encoding etreait, syndrome circuit & error procedures for shortened eyelic codes are identically cyclic codes.

- · All shortened eyelic codes inherit nearly all of tion advantages of eyelic codes.
 · The mathematical structure of eyelic codes serve as shortened eyelic codes.
- -x. Burit error Correcting Codes
- or a bit to cause beint errors.
- . Codes used for correcting random errors are efficient for correcting bank errors.
 - . Special codes have been developed to correct
- * Burnt of length q: Is defined an a vector whom

 Components are confined to

 digit positions, the limit & 1

 non-zero.
- Eq. The vector V= (00101001000) has a burst of

 A code which is capable of correcting all of

 length q or less is called q burst-crior con

 and is eaid to be beaut crior correcting

 The condition to a burst q correcting

 That the no of parity bits must at least pa

 ie., n-k > 2a

of an (n, E) cools i) $\boxed{q \leq \frac{n-E}{2}}$ bits.

3 For the (7,4) cyclic codes, $g(x) = 1 + x + x^3$ and $D(x) = d_0 + d_1x + d_2x^2 + d_3x^3$. Find all the 16 code vectors in **Systematic** and **Non systematic** form.

CO L3

Mon-systematic Cyclic Code

It is defined by V(x) = D(x) Q(x). for a (2,4) sec, - lu generator polynomial is

q(x)= 1+x+x3, -lind all -lu valid possible

ix Non-syltematic -lorm iix systematic form.

solo: Given $(n, k) = (n, y) \rightarrow 0$

 $\Rightarrow x^{p} + 1 = x^{\frac{2}{4}} + 1 \rightarrow \emptyset$ $q(x) = 1 + x + x^{\frac{3}{4}} \rightarrow \emptyset$

 $D(x) = d_0 + d_1 x + d_2 x^2 + d_3 x^2 \rightarrow \widehat{U}$

Valid positive code combis = $q^{k} = q^{k} = 16$.

The non-equipmentic cylic codes are given by $V(x) = D(x) q(x) \rightarrow \textcircled{5}$

substituting ear @ & a in @ yicklo.

 $v(x) = (d_0 + d_1 x + d_2 x^2 + d_3 x^3) (1 + \alpha + \alpha)$

= do + d, 2 + d, x + d, x + d, x = tdatda tda tda tda x It to import of received the set of the property of the

 $V(x) = d_0 x^0 + (d_0 + d_1)x + (d_1 + d_0)x^0 + (d_0 + d_1)x^0 + (d_0 + d_1)x + (d_1 + d_0)x^0 + (d_0 + d_1)x + (d_0 + d_1)x^0 + (d_0 + d_1)x + (d_0 + d_0)x^0 + (d_0 + d_0)x$ (ditda) x4+ dix5+ dix6 V(x) = Vo(x) + 0, x + 0. Possible Valid $q^{k} = q^{k} = 16$ Combination inputs(0) & its Code vectors are

(Cock Vector
msq (b)	10 11, 12 la 1240/dated da da
do d, d, d3	do (dota) (dita) (dotata) (dita)
0 0 0 0	0 0 0 0 0 0
	0 0 0 1 1 0
0 0 0 1	1 1 0 100
0010	0 0
0011	0 0 , 0 , 0 0
•	
0 1 0 0	0 1 0 0 1
0 1 0 1	
0 01 1 0	0 0 1 1
distribution of the second of	0 1 0
0 1 1 1	1, 1, 0, 1, 0, 0
1000	0 0 1
1000	1 (00000010
1010	Destroy is well to be to be
1 0 1 1	1 1 0 0
. • 156.6-7-16	Land has properly
1 1 0 0	0 0 0 0 1
1101	0 0 1 1 0
1110	PAGILIO A FOLD - GEDTE OF 1
Vests Ite 1	01016 9 0000 1000 1000
10 4 6	DID 10 1 100 1 100 1 10 10 10 10 10 10 10 1

place in the grant of the

5 5 7 5 7 7 5 7 5 7 5

systematic cyclic codes

In systematic cyclic codes - the left most check bits and the rest rightmost k bits are 4. To derive this set let us derive the gene in standard -lorm.

i.e.,
$$G = [P \mid J_k]_{EXN}$$

$$\Rightarrow G = [P \mid J_h]_{hx}$$

The -lirst now of a Gmatrix, & can be deri generator polynomial or.

given
$$q(x) = 1 + x + 2c^{3}$$

 $\Rightarrow q(x) = 1 \cdot x^{0} + 1 \cdot x + 0 \cdot x^{0} + 1 \cdot x^{0} + 0 \cdot x^{0} + 0$
since $(n = 3)$
 $\therefore \text{ Find Frow is 1101000}$

1114 3 more rows are oldained as - Jolloc

and now is generated using $x = q(x) = 0, x^0 + 1, x^1 + 1, x^2 + 0, x^3 + 1$ i was bry wi <= 0110100 -x 0011010 -> 2 (i wor 1114 ci won 4-14 $0001101 \rightarrow \alpha$

$$\Rightarrow G = \begin{bmatrix} 110 & 1000 \\ 011 & 0100 \\ 000 & 1101 \\ 000 & 11$$

since - lu augmented matrix, Edentity matrix is standard - 10 rm.

Performing Elementary row transformation

[R.,
$$R_3 \rightarrow R_3 + R_1$$

 $R_4 \rightarrow R_4 + R_2 + R_1$

$$\Rightarrow G = \begin{bmatrix} 1 & 0 & | & 0 & 0 & 0 \\ 0 & | & | & 0 & | & 0 & 0 \\ 1 & | & | & 0 & | & 0 & | \\ 1 & | & | & 0 & | & 0 & | \\ 1 & | & | & 0 & | & 0 & | \end{bmatrix}$$

$$\Rightarrow b = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Now since the 'G' matrix is in standard form, code can be obtained an follows.

4 Design an encoder for (7,4) binary cyclic code generated by g(x) = 1 + x + 10 CO L4 x^3 and verify its operation using the message vector (1001) and (1011).

soln: In general we have generator polynomial on $q(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_{n-k} x^{n-k}$ in the given data we have $q(x) : c + x + x^2$ $\Rightarrow q_0 = 1, \ q_1 = 1, \ q_2 = 0 \ \& \ q_3 = 1$ The encoding circuit for the given generator polynomial on

Encoding circuit - 100 (2,4) given BCC win

For the inpat may vector D=[1110] -the operation in the labor below.

1				r	Remai
No of ships In	put 1	12	ij Regis	fa	
100 d 20140 1 21	, bar		Continus		1
the trade of the	is a second of the	Po.	R,	R	101
switch posit	l croin				Mr.
Gali En	able		•		← boroce
10000		0	O	00	E boase.
1	0	0	0	0	PH -
2	1 parent	7	01	0	1001 115
3	1 4	1	0	117	10p -
τ'	Nall	0	V 1	0,	fig: wi
	pońtion ę			115	Port :
2001100	Di also			1.6	7
100	Dis alle	10	0	13.	. -
1/20 (\$1/1)	X .	1		0	150
	X	10	0	O	1
6 4		1	0	0	20
7	×	1	,		
1			- 1		

Explatation -for - la same in simple words if lex

at the party of the party of the second party

5 Consider a (3,1,2) convolution code with $g^{(1)}=(110), g^{(2)}=(101)$ and $g^{(3)}=(111)$. Draw the **Encoding Circuit** and obtain the **Generator Matrix**

CO L4

6 Consider a (3,1,2) convolution code with $g^{(1)}=(110), g^{(2)}=(101)$ and $g^{(3)}=(111)$. Find the code-word corresponding to the information sequence (11101) in *Time Domain* approach and *Transform Domain* approach

CO L4

5

10

7 Consider the binary convolution encoder shown in Fig. 7. Draw the state table, state transition table, state diagram and corresponding code tree. Using the code tree find the encoded sequence for (10111).

0 CO L4

State table, State Karusthen table, State diagnam, Code tree.

1. Down the state transition table, state diagram & code tree for (2,1,2) convolution encoder with impulse supporce $g^{(1)}=111$, $g^{(2)}=101$ & input D=[10111]

Som

1 State table

There are 2 flip flops in the shift negater i.e 2 ... There are 22 = 4 state with binary datas that nepresented in the table below

State	S.	S,	82	S
Binary Description	00	10	01	11

2) State Franktion Table.

It is a table indicating the transition between to Status and also the consesponding code bits output during each transition. The output of the mod-2 addess can be suppresented as $c^{(0)} = d_1 + d_{1-1} + d_{1-2}$ $c^{(0)} = d_1 + d_{1-2}$

Rusent	Jopat	Next	dı	d,.,	d1.2	Out-	put cos
So = 00	0.	So=00	0	0	0.	0	0
40 = 00	i	5, =10	1	0	D	1	1
S,= 10	0	5=01	0	1	0	1	0
	- 1	S3 =11	1	1	0	0	1
52=01	0	Sa =00	0	0	.1	- 1	1
~ - 1	- 1	5,=10	1	0	1	0	0
83 = 11	0	S2=01	0	1	1	0	1
		53=11	١	1	1	1	0

Construction: Initially, let the flip flops be cleared i.e '00'.

• If 1/p=0 ⇒ Shift negation at '00' → 50, .:0/p of add

c(1) c(4) =00

The contents of FF, (which was o') get shifted to FFD.

The new shift negister contents are 10' $\rightarrow S_1$ This transition is caused by a $ip = 1 + d_1 d_{F_1} d_{F_2} = 1$ 4 $C^{(i)} c^{(i)} = 11$.

3) state diagram.

