

Internal Assesment Test - III

			1110011101	i issesiment Te			1				
Sub:							ode: 15		5EC45		
Date:							anch:	ch: B & C			
	A	nswer three q	uestion fr	om Part A and	l all qu	estions in l	Part B				
										OBE	
	Part A						Ma	rks	СО	RBT	
1	Consider a commutation following are the range of the following are the range of the following following the following follow	requirements. ansmitted is: The carrier are the above: spectrum of the and sketch the	$c(t) = \cos(t)$ the message spectrum	3600ft) is usege signal that is	ed to go s be tra ing DSI	enerate the insmitted. B – SC – AM	e DSB –	[1	0]	CO3	L3
2	An amplitude modulated signal is given by, $s_{AM} = \lfloor 15 + 2\cos(80f) + 5\sin(120f) \rfloor \cos(4000ft)$ (a) Plot the spectrum of $s_{AM}(t)$ (b) Determine the power in the carrier and side band spectral components.						[1	0]	CO2	L3	
3	In a communication system, the FM modulating signal is given by the following $m_{FM}(t) = 10\cos(2f \times 300t) + +25\cos(2f \times 600t)$ a. Write an expression for the FM waveform $s_{FM}(t)$ where $A_c = 100$, $f_c = 5MHz$ and $k_f = 200Hz/V$. b. Determine maximum frequency deviation Δf and maximum phase deviation ΔW and the deviation ratio of the modulated signal.						g. [1	0]	CO1	L4	
4.	b. If the modu modulated	ch that the pe the BW of the ılating signal	ak freque modulate amplitude nine the E	ncy deviation ed signal. e is doubled, de BW of the mode	is 2.57	kH_Z .	of the	d [1	0]	CO1	L4
	 Draw a diag Very briefly 		Par modulator	t B and describe it	s opera	ation	[10)]		CO5	L3
	2. Briefly desc	ribe how wide	band FM	signals are gen	erated.		[10]				

Problem #3

I have used a higher frequency instead of 1800 Hz. I have used 18000Hz. The principle is the same.

a. Sketch the spectrum of message signal

$$S(f) = \frac{1}{2j} \left[\delta(f - 50) - \delta(f - 50) \right]$$

b Determine and sketch the spectrum of the resulting DSB-SC AM signal, identify the upper and lower sidebands in the spectrum.

Solution

$$x_1(t) = s_1(t)\cos(36000\pi t) = \sin(100\pi t)\cos(36000\pi t)$$

$$= \frac{1}{2} \left[\sin(36100\pi t) - \sin(35900\pi t) \right]$$

$$= \frac{1}{2} \left[\sin(36100\pi t) - \sin(35900\pi t) \right]$$

Taking the FT of both sides, we obtain

$$X(f) = \frac{1}{17} \left[\delta(f - 1895) - \delta(f - 1895) - \delta(f - 1795) + \delta(f + 1795) \right]$$

Har # 1 1AT-3

problem #2 heing trignometric identition

(4) = 15 COS (4,000 TH) + COS (4080+) + COS 7920+++
+ 25 8m (120 TH)

PT

$$X_{am}(f) = \frac{1}{2} \sum_{i=1}^{n} \delta(f-2000) + \delta(f+2000) \int_{i=1}^{n} \frac{1}{2} \left[\delta(f-2040) + \delta(f+2040) \right] + 0.5 \left[\delta(f-1960) + \delta(f+1960) \right] - \frac{1.25}{j} \left[\delta(f-1940) - \delta(f+1940) \right] + \frac{1.25}{j} \left[\delta(f-2060) - \delta(f+2060) \right]$$

X

2

Similarly on the -re-fide

Problem #3 M(1) = 10 CM (2T.30CH) + 25 COS (2T-600H) given A2:100 Te = 5 MHZ Rf= 200 47/ 22: = A COS [8-4, L + 8TKg] mxido = 100 CB [8 T. 10 2+ 8 T. 200 \$ 10 8m (AT 300 E) = 100 COS [2-17-10 + + 8th 200 (20 Am AT. 300+) + 85 4m (2 m. 600)) = 100 CO [= - 5 - - 1 (20 8m & 17-3004) + 25 8m (& T. 6004) Maximum frey derivation Almox Rg. Max of MA) + 800 N 3 5 - 2-00 47 2 deviation 18 man lk more many value of the comple \$ (27.300 +) + 25 em (55.600+) = 15 row Devialin Ratio/= Afray 7x10 70/6

IAT 3: Solutions: Problem #1

Problem #4

a. Determine the bandwidth of the modulated signal.

Solution:

$$B_{\tau} = 2(\Delta t_{max} + f_{m})$$

Substituting $\gamma_{\perp} = 1 \text{ kHz}$ and $\Delta \gamma_{\perp} = 2.5 \text{ kHz}$, we obtain

 $B_1 = 2(2.5 - 1) = 7 \text{ kHz}$

 If the modulating signal amplitude is doubled, determine the bandwidth of the modulated signal.

Solution:

Doubling the amplitude doubles the peak frequency deviation $\Delta t_{\rm max}$. Therefore,

 $\Delta V_{max} = 5 \text{ kHz}$

Substituting yields

6 = 2(5 - 1) - 12 kHz

e Determine the handwidth of the modulated signal if the modulating signal frequency is doubted

Solution:

Now $t_0 = 2 \text{ kHz}$ and $\Delta t_{\text{max}} = 2.5 \text{ kHz}$. Substituting

 $B_z = 2(2.5 + 2) = 0 \text{ kHz}$