CMR INSTITUTE OF TECHNOLOGY

<u>Improvement Test – Jun 2017</u>

Sub:	ub: Antennas and Propagation					Code:	10EC64		
Date:	01/06/2017	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE
Answer ANY FIVE questions									

Answer legibly and draw the diagrams neatly. Give proper units wherever necessary.

			0])BE	
			CO	RF	
1.	Derive the expression for resultant field strength at a point due to space wave propagation. Grown Reflection If the two attennes are schooled close to the grown, due to the discartinuity on the elabrical properties at the air-ground interface, any move that fulls on the ground in reflected. — Reflection amount depends on angle of incidence followization of the anave, destrical properties (conductivity, dielectric entrat). — Reflection of the anave destrical properties (conductivity, dielectric entrat). — Reflection of the anave destrical properties (conductivity, — Reflection of the anave destrication of the anave destreca	10	CO6	L	

cavider a transmit advance broked at point P at
a leight by and a receive advance Q at a bright
hn from the surface of the ground
- let the torizontal distance leve the asternooled
- (a) The direct path
(b) Ground reflected path,
- The total electric field at any point Q is
given by the vector sum of the electric fields due
to the direct and ground reflected path.
- The total statume and the field point are
broked in the y-z plane.
- The two atoms is broked along Diptore
x-asis.
- The during faeld of an infinitesimal dipole
oriented along the x-axis is.

$$\vec{E} = -jRQ \frac{T-odl}{4\pi} \frac{e^{-jRR}}{R} (facesociet - fixing)$$

To the yz plane, $\phi = 90^{\circ}$.
 \therefore cas 90° = 0, the 0- component of the
electric field is zero.
- The dy and the electric field D at Q
due to the during the electric field D at Q
due to the during the electric field D at Q
 $K = jRQ \frac{T-odl}{4\pi} = \frac{-jRR}{R}$

- The field at a also has contribution from the
wave that travels via the suffraded put PRQ.
- The location of X definds on Ky Kn and d.
- At X, the the incident and suffraded traves
satisfy shall is have of suffraded to angle of
suffration)
- YE flame is the flame of incidence.
- The incident field at X is.
Ex = jk ? Toth e^{jKe' ... ③
Ry' is distance from the known itset to X
and A source incident E field ventor is 12 to
the flame of incidence.
. At X, the suffration coefficient.
The Ex =
$$\frac{1}{R_2} = \frac{10}{R_1} - \frac{\sqrt{(E_n - jR)} - costy}{\sqrt{(E_n - jR)} - costy} - ③
When: $R = \frac{1}{R_2} = \frac{10}{R_1} + \sqrt{(E_n - jR) - costy} - ③
When: $R = \frac{1}{R_2} = \frac{10}{R_1} + \sqrt{(E_n - jR) - costy} - ③
When: $R = \frac{1}{R_2} = \frac{10}{R_1} + \sqrt{(E_n - jR) - costy} - ③
When: $R = \frac{1}{R_2} = \frac{10}{R_1} + \sqrt{(E_n - jR) - costy} - ③
When: $R = \frac{1}{R_2} = \frac{10}{R_1} + \sqrt{(E_n - jR) - costy} - ③
When: $R = \frac{1}{R_2} = \frac{10}{R_1} + \sqrt{(E_n - jR) - costy} - ③$
When $R = \frac{1}{R_2} = \frac{10}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} - \frac{1}{R_1}$$$$$$$$

This is the field at the due to an aquivalent (image) dipole having a strength I adlT located at (0, 0, - ht) Invident Normal Normal The Ex Repeated Incidente LES En En Reflected wave LES En Hy wave brave HE Xreenn TTITITIT 11117 Perpendicular Polarization. Parallel Polarization The total electric field at Q is given by, $E = E_1 + E_2 = j R \left(\frac{T_o M}{4\pi} \left(\frac{e^{-j R R_1}}{R_1} + T_L \frac{e^{-j R R_2}}{R_1} \right) \right)$ -JER2 If the field point & is far away from the transmitted, to the (when R) and R2 are in the derminator. € R1 ≈ R1 $: E = E_1 + E_2 = jk\eta \frac{\tau_{odl}}{4\eta} \cdot \frac{e^{-jkR_1}}{R_1} \left(1 + T_L \frac{e^{jR_1}}{e^{-R_1}} \right)$. The total field is the product of the . free pace field and and an environmental E factor, F_{\perp} , given by, $F_{\perp} = (1 + T_{\perp} e^{-\beta k (R_{\perp} - R_{\perp})}) \dots \otimes$ Next, consider an infinitestimal dipole at (0,0, ht) oriented along 2-direction. The electric field of an 2-directed infiniteerinal dipole is E = ao jn ktodland - JRRI 40 RI

$$\begin{split} & \mathcal{F}_{1} \rightarrow \text{distance from the antenna to the field} \\ & \mathcal{F}_{0} \text{ int.} \\ & \text{The lattice field in IIR to the flame of involvence and the sufflation co-officient \mathcal{T}_{11} , do $X \text{ is given by}, \\ & \mathcal{T}_{11} = (\underline{e_{N}} - \underline{j_{N}}) \frac{w_{N} \psi}{w_{N} \psi} - \sqrt{(\underline{e_{N}} - \underline{j_{N}})} - \underline{e_{N} t_{V}} \\ & \mathcal{K} \text{ is given by}, \\ & \mathcal{T}_{11} = (\underline{e_{N}} - \underline{j_{N}}) \frac{w_{N} \psi}{w_{N} \psi} + \sqrt{(\underline{e_{N}} - \underline{j_{N}})} - \underline{e_{N} t_{V}} \\ & \mathcal{K} \text{ is given by}, \\ & \mathcal{K} = \underbrace{\mathcal{K}}_{N} = \underbrace{\mathcal{K}}_{N} \\ & \mathcal{K} = \underbrace{\mathcal{K}}_{N} = \underbrace{\mathcal{K}}_{N} + \underbrace{\mathcal{K}}_{N} + \underbrace{\mathcal{K}}_{N} = \underbrace{\mathcal{K}}_{N} \\ & \mathcal{K} = \underbrace{\mathcal{J}}_{N} \mathbb{C} \\ & \frac{\tau_{-j} dR}{4n} \left(\underbrace{\frac{e^{-jR_{N}}}{R_{1}}}_{R_{1}} + \underbrace{\mathcal{K}}_{N} + \underbrace{\mathcal{K}}_{N} \\ & \mathcal{K} = \underbrace{\mathcal{K}}_{N} \\ & \mathcal{K} = \underbrace{\mathcal{K}}_{N} \\ & \frac{\tau_{-k} dR}{4n} \left(\underbrace{\frac{e^{-jR_{N}}}{R_{1}}}_{R_{1}} + \underbrace{\mathcal{K}}_{N} \\ & \mathcal{K} = \underbrace{\mathcal{K}}_{N} \\ & \mathcal{K} = \underbrace{\mathcal{K}}_{N} \\ & \mathcal{K} = \underbrace{\mathcal{K}}_{N} \\ & \frac{\tau_{-k} dR}{4n} \\ & \frac{e^{-jR_{N}}}{R_{1}} - \underbrace{\mathcal{K}}_{N} \\ & \frac{e^{-jR_{N}}}{R_{1}} \\ & \mathcal{K} = \underbrace{\mathcal{K}}_{N} \\ & \frac{e^{-jR_{N}}}{R_{1}} \\ & \mathcal{K} = \underbrace{\mathcal{K}}_{N} \\ & \frac{e^{-jR_{N}}}{R_{1}} \\ & \frac{e^{-jR_{N}}}{R_$$$

Similarly,
$$R_{\lambda}$$
 can be expressed as,
 $R_{\lambda} \simeq k_{\lambda} \left[1 + \frac{1}{2} \left(\frac{k_{\lambda}+k_{\lambda}}{d}\right)^{2} - \frac{1}{2} \left(\frac{k_{\lambda}-k_{\lambda}}{d}\right)^{2} - \frac{1}{2} \left(\frac{k_{\lambda}-k_{\lambda}}{d}\right) - \frac{1}{2}$

- In compute this could, earth belows like
a lasty conductor.
- As write proposed from lass in earth's
nearthing a strained product predict.
- So prive heaps on reducing as the owner propagates.
- So prive heaps on reducing as the owner propagates.
- Allo prive for till the trunch forward
direction.
- 91 happens on teath is not a perfect conductor.
(forker a).
- There is a horizontal conforment of a.
B So En Title angle (
$$\alpha$$
),
- There is a horizontal conforment of a.
B So En Title angle (α),
- There is a horizontal conforment of a.
B So En Title angle (α),
- There is $\frac{2e}{2\pi}T = \frac{2e}{2e}H = \frac{2e}{2e}$
 $B Fin = 2eT_{2} = Z_{2}H$
 $E_{H} = \frac{2e}{2}T_{2} = Z_{2}H = \frac{2e}{2e}$
 $B Fin = \frac{2e}{2e}T_{2} = Z_{2}H = \frac{2e}{2e}$
 $B Fin = \frac{2e}{2e}T_{2} = \frac{1}{2e}H = \frac{2e}{2e}$
 $E_{2} = \frac{1}{\sqrt{2e}(T_{2})}T_{2} = \frac{1}{\sqrt{2e}(T_{2})}T_{2}$
 $H He with with managed is, $L \ge h_{1}$, $C \le C_{1} \le C_{2}$
 $H He with with managed is, $L \ge h_{2}$, $C \le C_{2} \le T_{2}$
 $H = \frac{2e}{2e}T_{2} = \frac{1}{\sqrt{2e}(T_{2})}T_{2}$
 $H = \frac{2e}{2e}T_{2} = \frac{1}{\sqrt{2e}(T_{2})}$$$

		1		
	$\gamma = \frac{5}{\omega \epsilon} = \frac{5}{\omega \epsilon_0 \epsilon_x} = \frac{6 \times 10^{-3}}{2 \pi \times 2 \times 10^6}$ $= \frac{4 \cdot 4938 \times 10^{-3} \times 10^{-3}}{10^{-6}}$ $= 4 \cdot 49.$			
	$i d = tan \left(\frac{1}{\sqrt{12}} \right)$ = $tan^{-1} \left(\frac{1}{\sqrt{12}} \right)$			
3.(a)	What are the factors affecting ground propagation. Explain the Somerfield equation for ground wave propagation.	7	CO6	L2
	 Till now we assumed that antimae are stituated in infinit four space. But prochably it is not the case. The factors which after the propagation of radio waves in actual environment are fellowing: (1) aphrical shape of Earth waves travel in a straight line path in free space communication between two paints is limited to however. So, to establish a commutative beyond the however. So, to establish a commutative beyond the however. Atmosphere !- The earth's atmosphere extends upto 600 km. statesphere !- The carth's atmosphere (>155 km) stratosphere (>155 km) for some frequencies. for some frequencies.<			

Interaction of wave/fields with medium and discontinuities " scentte in (1) Reflection (11) Reflection (111) Diffraction (11) scattering. Reflection, Refraction:snell's have of suffection and suffraction. Oi Or 01 Optics. En wave in inhomogeneor $\theta_{i}^{\circ} = \theta_{h}$ miduem is known as (Reflection) En Sindi = Ex Sinda " refraction (Repraction) These laws are applicable if radius of curvature of the interface as well as that of wavefoont is large compared to the wavelingth of operation. Diffraction: - Whenever an edge is encountered by the electro. magnetic fields, the induced currents can flow around the edge to the opposite kide of Austace and produce fields Scattering :- The interaction of fulde with discontinuities or inhomogeneities which are small compared to wavelength is generally known as 'scattering' Ex: due to presence of seain altop . Ground-wave Attenuation factor Annif considered, b=00 10-4 10-2. 10-3 41 10-2 10-1 1 10 102 0 10-2 10-1 1 Numerical distance (P) At the impace of the earth, the attenuation factor is also known as the ground wave attenuation factor, Asu. p= nr cosh where, R -> distance life Tx and Rx antenna λ → Wavelength χ = 5 = less factor = Je le = pomero factor angle b= tan-1 (Ex+1)

(b)	Accessing to some fill equal $E = E_{a} \frac{A_{a}}{R}$ As Anot $\frac{1}{p}$ and $\frac{1}{p} \propto \frac{1}{R} R$ $\frac{A_{a}}{R} \frac{A_{a}}{R} \frac{A_{a}}{R} \approx R T E L T = \left[\frac{1}{2} \frac{1}$	3	CO6	L2
4.	In case of tropospheric propagation, show that the radius of curvature of the path of an electromagnetic wave is a function of the rate of change of dielectric constant with height. Also explain duct propagation of wave.	10	CO6	L2

dh n+dn 6+18 de n 40 12-0 wave- propagation in stratified medium A 78 - Tropp sphere is made up of itsubified largers parallel to the surface of the earth. i.e. a.d is a fr. of height only -A say inident from the lower hayers at post P is refraited through the layer dh and toucles the upper layer at point a. A angle of incidence with the normal draws to the plane at P (0+d0) - angle of refraction at P. Aim: To calculate radius of envature & of the way. - Draw angle - bisectory at Pand d. Let then need at 0. ZAPQ = 11- do -- 1 op bisets angle CAPQ. $i \quad LOPA = \prod_{k=1}^{n} \frac{1}{2} (APA = \frac{n}{2} - \frac{10}{2}).$ Draw 00'1' to PR. In A POO', 2POO'= 1 - LOPA. 1.0

... The so angle subtanded by the segment
ds dt 0 so,

$$ZPOQ = 2 \le POO' = d\theta \cdot ... (2)$$

... $dx = 3 d\theta \cdot ... (3)$
From d POT,
 $dw = dh$, $(90 - (0+d\theta)) = con((0+d\theta))$
 $\Rightarrow ds = \frac{dh}{du} = con((0+d\theta)) = con((0+d\theta))$
 $\Rightarrow ds = \frac{dh}{con((0+d\theta))} \simeq \frac{dh}{con(t)} fon shull d\theta ... (3)$
 $\Rightarrow n = \frac{ds}{d\theta} = \frac{dh}{con((0+d\theta))} \sim (3)$
According to law of subjection.
 $n = son \theta = (n+dn) sin((0+d\theta))$
 $\Rightarrow n such = (n+dn) sin((0+d\theta))$
 $\Rightarrow n such = (n+dn) for $\delta = cond(0)$ + cond sind(0)
For model d\theta, cond(0 = 1) subjection $d\theta = d\theta$
 $\Rightarrow n un \theta = (n+dn) for $\theta = cond(0) + cond(0)$
 $for model d\theta, cond(0) = d\theta$
 $\Rightarrow n un \theta = (n+dn) for $\theta = cond(0) + dn cond(0) + dn d\theta cond(0)$
 $for model d\theta, cond(0) + dn cond(0) + dn d\theta cond(0)$
 $for model de = n subjection for $\theta = dn$ and dh
 $\therefore (n cond(0) = - dn cond(0) + dn cond(0) + dn d\theta cond(0)$
 $\Rightarrow cond(0) = - dn cond(0) + dn cond(0) + dn d\theta cond(0)$
 $for $d\theta = - and dn$
 $substituting this into comm. (0),$
 $\left[gn = - \frac{dh}{n} - \frac{gn}{n} + \frac{gn}{dt} + \frac{gn}{dt$$$$$$

To there of angle of middence, the radius of
currentses,

$$N = \frac{n}{m(\frac{n}{2}-\theta)} \left(-\frac{d_{12}}{d_{12}}\right)^{-1} \frac{n}{\cos \theta} \left(-\frac{d_{12}}{d_{12}}\right)^{-1} \left(\frac{\pi}{2}\right)^{-1}$$

for $\phi \approx 0$
 $h = \frac{1}{-\frac{d_{12}}{d_{12}}} - \frac{\pi}{2}$ $\left(\frac{1}{2}\right)^{-1} \frac{d_{12}}{d_{12}} + \frac{1}{2} \frac{d_{12}}{d_{$

ii.

> with = 1 - fer => 1- and Om = can om = Brut fice BMUF > /conton = fin The withink freeze and the maximum usable freeze are related by the expression, fror = for sec or 91 fie = 9 MHz, for 0 = 45°, 6 more = 9x sec 45° = 12.73 MHZ. Skip distance In the sigin of durince have than Delip, it is not possible to establish a communication link by the waves softented from the ionosphere. - Assumed that ionesphere can be modelled as a flat reflecting surface at a leight h (untral leight) from the surface of the flat earth. - Let On -> angle of incidence of a wave of free. brug weich gets reflected from the implere - If angle of invidence >0 m the wave is reflected link by tone splace. mei = J 1- BIN - For $\theta_i > \theta_m$ and $i = \int_{-}^{1} \frac{1}{1 + 1} \int_{-}^{1} \frac{1}{1$

which occurs at a faight law than h - for Oi < On, imosphere const reflect the

- set I Oi = On reach the surface of the cash at P

- The distance Draip is known as the ship distance

at a distance of Dakip from the transmitter.

0>

From agreen (), 81 N = fer.

· mon = 1 - lia

	illustrial for a first a start for a Ty realing the receiver of the start of the s			
	- consider on e.m. wave from a Tx reaching the receiver ofter being noflected by the conceptere. as shown in fig. - I incident and reflected waves are extended			
	they need at the point D. - The vertical horght from the ground to the point Die known as the visitual herght which is higher than the lower edge of the atmosphere.			
6.(a)	Calculate the value of the operating frequency of the ionosphere's layer specified by refractive index of 0.85 and an electron density of 5×10^5 electrons/m ³ . Calculate the critical frequency and MUF of the system with $\theta_i = 30^\circ$.	6	CO6	L3

	Soln: En = 1- BIN			
	$=$ $\sqrt{\epsilon_n} = n \cdot i = \sqrt{1 - 8/n}$			
	=> 0.85 = J1-81 X5-			
	$=> 0.85 = \sqrt{1 - \frac{81 \times 5 \times 10^5}{8^2}}$ => 0.7225 = 1 - $\frac{405 \times 10^5}{12}$			
	=> 405 x105 f2			
	$\frac{3}{12} = \frac{405 \times 10^{5}}{12} = 1 - 0.7205 = 0.2775$			
	$\Rightarrow \int_{-2}^{\infty} \frac{405 \times 10^{5}}{0.2775} = 1459.45 \times 10^{5} \Rightarrow \int_{-12080.80}^{-12080.80} M^{2}$			
	ACR = JBIN = JBIX5X105 = 6363-96 Hz			
	Inver = lice secon = lice			
	Drup = 6363.96 = 7348.468 Hz.			
(b)	In an ionospheric propagation the angle of incidence made at a particular layer at a	4	CO6	L3
	height of 200 km. is 45° with critical frequency of 6 MHz. Calculate the skip distance.			
	Sha dia = 6 MHo, Da= 45°.			
	- Brus = Berder = ber = 6x106 = 8-48 MW,			
	$D_{sleip} = 2 \times 200 \times 10^3 \sqrt{\frac{8 \cdot 48}{6}^2 - 1}$			
	= 400 × 10 ³ × 1.9975 - 1 = 399.5 Rm			
7.	With a neat figure explain the working of Yagi-Uda antenna. Write the design	10	CO5	L2
	formulae for different components used in Yagi-Uda antenna. Also mention the			
	applications of Yagi-Uda antenna.			
L	I			

Applications) Yagi Uda away is the next popular anterna for the reception of twindwich television signal in the VHF band (20 MH = - 300 MHz) 2) Yagi Uda aways can be used in the HF, VHF, UHF and microwave frequency bands. - In the HF band, the away is contributed using wires and at VHF and UHF, hollow pripes are used for the contruction of Yage - Uda awaya incomed claudewickies 1) It provides gain of the order of 8 de or field to back school of about 20 de 2) Its is frequency reviewe and a band width of olart 3% is discinctly. 4) Arrays can be while to increase directively. 5) It an unideration for and a band width of all of the transfer working a cost and dene to its high gain, and a band width of solart 3% is discinctly. I are cost and dene to its high your, working a cost and and the light working for a cost and dene to its high your cost and a band width of all of the light working for a cost and dene the light working for a cost and dene the light working have cost and dene the light working have cost and		005	
8.(a) With a neat sketch explain the principle of lens antenna. Also list the merits and demerits of lens antenna.	5	CO5	L2

(b) A parabolic reflector of 2 m diameter is used at 10 GHz. Calculate the beam width

$$\int_{1}^{R} \int_{1}^{R} \int_{1}^{$$