
Improvement  Test – May 2017

Note: Answer any 5 questions. All questions carry equal marks.
Total marks: 50

Marks
OBE

CO RBT

1 (a) Write a C++ program to overload + operator to add two strings. [05] CO2 L2

(b) Write a C++ program where a member function receives argument as object &
returning object.

[05] CO2 L2

2. Explain various types of inheritances of C++ with diagrams. [10] CO2 L2

3. Write-up details of access control mechanism with table for type of members
& type of derivation

[10] CO3 L3

4. Define a class customer with data members accno, name and balance and public
member functions for: deposit( ), withdraw( ) (with checking balance) & show(
). Call member function using main function.

[10] CO3 L3

5. What is virtual base class? What is problem with diamond inheritance? Write
solution with example program.

[10] CO3 L2

6. Write one example program in C++ to initialize base class using derived class
constructor.

[10] CO3 L2

7. What are exceptions & exception handling? Define mechanism of C++ for the
same using try, throw & catch blocks with example program as division by zero
exception.

[10] CO3 L3

8. Explain use of virtual function in run-time polymorphism with example
program.

[10] CO4 L3

Sub: Programming in C++ Code: 10EC665/10TE661

Date: 31/05/17 Duration:
90

mins
Max

Marks: 50 Sem: VI Branch: ECE/TCE



Question # Description Marks Distribution Max Marks

1 a program to overload + operator to add two strings. 5M 5M 5M

1 b

program where a member function receives
argument as object & returning object.

2.5M

2.5M 5M 5M

2
types of inheritances of C++ with diagrams

10M 10M 10M

3

access control mechanism with table for type of

members  & type of derivation

5M

5M 10M 10M

4
class customer with data members accno, name and
balance and public member functions for: deposit(
), withdraw( ) (with checking balance) & show( ).

10M 10M 10M

5

virtual base class

diamond inheritance

Solution with example program.

3M

3M

4M

10M 10M

6
Program in C++ to initialize base class using
derived class constructor.

10M 10M 10M

7

exceptions & exception handling

Define mechanism of C++ for the same using try,
throw & catch blocks with example program as
division by zero exception.

4M

6M
10M 10M

8 virtual function in run-time
polymorphism with example

5M

5M
10M 10M



QUESTION BANK WITH SOLUTION FOR IMPROVEMENT TEST

Explain exception handling in detail. Why do we require it? Name different
types of exception.

Explain try, throw and catch blocks / Explain how to throw exception and how
to catch exception.

What are exception specifications?

An exception is a problem that arises during the execution of a program. A C++
exception is a response to an exceptional circumstance that arises while a
program is running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to
another. C++ exception handling is built upon three keywords: try, catch, and
throw.

 throw: A program throws an exception when a problem shows up. This is
done using a throw keyword.

 catch: A program catches an exception with an exception handler at the
place in a program where you want to handle the problem. The catch
keyword indicates the catching of an exception.

 try: A try block identifies a block of code for which particular exceptions will
be activated. It's followed by one or more catch blocks.

Types of Exception :

1) Synchronous Exception

2) Asynchronous Exception

Assuming a block will raise an exception, a method catches an exception using a
combination of the try and catch keywords. A try/catch block is placed around the
code that might generate an exception. Code within a try/catch block is referred
to as protected code, and the syntax for using try/catch looks like the following:

try



{
// protected code

}catch( ExceptionName e1 )
{

// catch block
}catch( ExceptionName e2 )
{

// catch block
}catch( ExceptionName eN )
{

// catch block
}

You can list down multiple catch statements to catch different type of exceptions
in case your try block raises more than one exception in different situations.

Throwing Exceptions:

Exceptions can be thrown anywhere within a code block using throw statements.
The operand of the throw statements determines a type for the exception and
can be any expression and the type of the result of the expression determines the
type of exception thrown.

Following is an example of throwing an exception when dividing by zero condition
occurs:

double division(int a, int b)
{

if( b == 0 )
{

throw "Division by zero condition!";
}
return (a/b);

}

Catching Exceptions:



The catch block following the try block catches any exception. You can specify
what type of exception you want to catch and this is determined by the exception
declaration that appears in parentheses following the keyword catch.

try
{

// protected code
}catch( ExceptionName e )
{
// code to handle ExceptionName exception

}

Above code will catch an exception of ExceptionName type. If you want to specify
that a catch block should handle any type of exception that is thrown in a try
block, you must put an ellipsis, ..., between the parentheses enclosing the
exception declaration as follows:

try
{

// protected code
}catch(...)
{
// code to handle any exception

}

The following is an example, which throws a division by zero exception and we
catch it in catch block.

#include <iostream>
using namespace std;

double division(int a, int b)
{

if( b == 0 )
{

throw "Division by zero condition!";
}
return (a/b);



}

int main ()
{

int x = 50;
int y = 0;
double z = 0;

try {
z = division(x, y);
cout << z << endl;

}catch (const char* msg) {
cerr << msg << endl;

}

return 0;
}

Because we are raising an exception of type const char*, so while catching this
exception, we have to use const char* in catch block. If we compile and run above
code, this would produce the following result:

Division by zero condition!

Different ways of throwing an exception

throw()

throw  no.;

throw

Rethrowing mechanism

An exception is thrown by using the throw keyword from inside the try block.
Exception handlers are declared with the keyword catch, which must be placed
immediately after the try block:



// exceptions
#include <iostream>
using namespace std;

int main () {
try
{

throw 20;
}
catch (int e)
{

cout << "An exception occurred. Exception Nr.
" << e << '\n';
}
return 0;

}

An exception occurred.
Exception Nr. 20

The code under exception handling is enclosed in a try block. In this example this
code simply throws an exception:

throw 20;

A throw expression accepts one parameter (in this case the integer value 20),
which is passed as an argument to the exception handler.

The exception handler is declared with the catch keyword immediately after the
closing brace of the try block. The syntax for catch is similar to a regular function
with one parameter. The type of this parameter is very important, since the type
of the argument passed by the throw expression is checked against it, and only in
the case they match, the exception is caught by that handler.

Multiple handlers (i.e., catch expressions) can be chained; each one with a
different parameter type. Only the handler whose argument type matches the



type of the exception specified in the throw statement is executed.

If an ellipsis (...) is used as the parameter of catch, that handler will catch any
exception no matter what the type of the exception thrown. This can be used as a
default handler that catches all exceptions not caught by other handlers:

try {
// code here

}
catch (int param) { cout << "int exception"; }
catch (char param) { cout << "char exception"; }
catch (...) { cout << "default exception"; }

In this case, the last handler would catch any exception thrown of a type that is
neither int nor char.

After an exception has been handled the program, execution resumes after the
try-catch block, not after the throw statement!.

It is also possible to nest try-catch blocks within more external try blocks. In these
cases, we have the possibility that an internal catch block forwards the exception
to its external level. This is done with the expression throw; with no arguments.
For example:

try {
try {

// code here
}
catch (int n) {

throw;
}
}
catch (...) {
cout << "Exception occurred";



}

Exception specification
Older code may contain dynamic exception specifications. They are now
deprecated in C++, but still supported. A dynamic exception specification follows
the declaration of a function, appending a throw specifier to it. For example:

double myfunction (char param) throw (int);

This declares a function called myfunction, which takes one argument of type char
and returns a value of type double. If this function throws an exception of some
type other than int, the function calls std::unexpected instead of looking for a
handler or calling std::terminate.

If this throw specifier is left empty with no type, this means that std::unexpected
is called for any exception. Functions with no throw specifier (regular functions)
never call std::unexpected, but follow the normal path of looking for their
exception handler.

1
2

int myfunction (int param) throw(); // all exceptions call unexpected
int myfunction (int param); // normal exception handling

It is better to consider class notes for programming examples.

Explain Inheritance with Types with suitable diagram.

One of the most important concepts in object-oriented programming is that of inheritance.
Inheritance allows us to define a class in terms of another class, which makes it easier to create
and maintain an application. This also provides an opportunity to reuse the code functionality
and fast implementation time.



When creating a class, instead of writing completely new data members and member functions,
the programmer can designate that the new class should inherit the members of an existing
class. T his existing class is called the base class, and the new class is referred to as the derived
class.

The idea of inheritance implements the “ is a” relationship. For example, mammal IS-A animal,
dog IS-A mammal hence dog IS-A animal as well and so on.

Base & Derived Classes:

A class can be derived from more than one classes, which means it can inherit data and
functions from multiple base classes. T o define a derived class, we use a class derivation list to
specify the base class(es). A class derivation list names one or more base classes and has the
form:

class derived-class: access-specifier base-class

Where access-specifier is one of public, protected, or private, and base-class is the name of a
previously defined class. If the access-specifier is not used, then it is private by default.

In C++, we have 5 different types of Inheritance. Namely,

1. Single Inheritance

2. Multiple Inheritance

3. Hierarchical Inheritance

4. Multilevel Inheritance

5. Hybrid Inheritance (also known as Virtual Inheritance)

Single Inheritance

In this type of inheritance one derived class inherits from only one base class. It is the most
simplest form of Inheritance.



Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two base
classes.

Hierarchical Inheritance

In this type of inheritance, multiple derived classes inherits from a single base class.



Multilevel Inheritance

In this type of inheritance the derived class inherits from a class, which in turn inherits from
some other class. The Super class for one, is sub class for the other.

Hybrid (Virtual) Inheritance

Hybrid Inheritance is combination of Hierarchical and Mutilevel Inheritance.



Explain how to Inherit base class in Public, Private and Protected Mode.

Access Control and Inheritance:
A derived class can access all the non-private members of its base class. Thus base-class
members that should not be accessible to the member functions of derived classes should be
declared private in the base class.

We can summarize the different access types according to who can access them in the
following way:

Consider Table written in class while explaining concept
Access public protected private
Same class yes yes yes
Derived classes yes yes no
Outside classes yes no no

A derived class inherits all base class methods with the following exceptions:
Constructors, destructors and copy constructors of the base class.
Overloaded operators of the base class.
The friend functions of the base class.

Type of Inheritance:
When deriving a class from a base class, the base class may be inherited through public ,
protected or
private inheritance. T he type of inheritance is specified by the access-specifier as explained
above.



We hardly use protected or private inheritance, but public inheritance is commonly used.
While using
different type of inheritance, following rules are applied:
Public Inheritance: When deriving a class from a public base class, public members of the base
class become public members of the derived class and protected members of the base class
become protected members of the derived class. A base class's private members are never
accessible
directly from a derived class, but can be accessed through calls to the public and protected
members
of the base class.
Protected Inheritance: When deriving from a protected base class, public and protected
members of the base class become protected members of the derived class.
Private Inheritance: When deriving from a private base class, public and protected members of
the base class become private members of the derived class.

Explain Virtual Base class.
The diamond problem
The diamond problem occurs when two super classes of a class have a common base class. For
example, in the following diagram, the TA class gets two copies of all attributes of Person class,
this causes ambiguities.

For example, consider the following program.
#include<iostream>
using namespace std;
class Person {



// Data members of person
public:

Person(int x) { cout << "Person::Person(int ) called" << endl; }
};

class Faculty : public Person {
// data members of Faculty

public:
Faculty(int x):Person(x) {

cout<<"Faculty::Faculty(int ) called"<< endl;
}

};

class Student : public Person {
// data members of Student

public:
Student(int x):Person(x) {

cout<<"Student::Student(int ) called"<< endl;
}

};

class TA : public Faculty, public Student {
public:

TA(int x):Student(x), Faculty(x) {
cout<<"TA::TA(int ) called"<< endl;

}
};

int main() {
TA ta1(30);

}
Person::Person(int ) called
Faculty::Faculty(int ) called
Person::Person(int ) called
Student::Student(int ) called
TA::TA(int ) called



In the above program, constructor of ‘Person’ is called two times. Destructor of ‘Person’ will
also be called two times when object ‘ta1′ is destructed. So object ‘ta1′ has two copies of all
members of ‘Person’, this causes ambiguities. The solution to this problem is ‘virtual’ keyword.
We make the classes ‘Faculty’ and ‘Student’ as virtual base classes to avoid two copies of
‘Person’ in ‘TA’ class. For example, consider the following program.

#include<iostream>
using namespace std;
class Person {
public:

Person(int x) { cout << "Person::Person(int ) called" << endl; }
Person() { cout << "Person::Person() called" << endl; }

};

class Faculty : virtual public Person {
public:

Faculty(int x):Person(x) {
cout<<"Faculty::Faculty(int ) called"<< endl;

}
};

class Student : virtual public Person {
public:

Student(int x):Person(x) {
cout<<"Student::Student(int ) called"<< endl;

}
};

class TA : public Faculty, public Student {
public:

TA(int x):Student(x), Faculty(x) {
cout<<"TA::TA(int ) called"<< endl;

}
};

int main() {
TA ta1(30);

}



Output:
Person::Person() called
Faculty::Faculty(int ) called
Student::Student(int ) called
TA::TA(int ) called

In the above program, constructor of ‘Person’ is called once. One important thing to note in the
above output is, the default constructor of ‘Person’ is called. When we use ‘virtual’ keyword, the
default constructor of grandparent class is called by default even if the parent classes explicitly
call parameterized constructor.

How to pass parameters to base class constructor through derived class?
Discuss cases
Case 1:  base class and derived class both ha constructor
Class Base
{
Int xx;
Public:
Base(int x) { xx=x;}
…
};

Class derived: public base
{
Int yy, zz;
Public:
derived(int y , int z, int x):base(x)
{
yy=y;
zz=z;
}
…
};
Main()
{
derived ob1(2,3,4);  // xx=4  yy=2 zz=3
}



Case 2: derived class don’t have constructor but base class has.
Class Base
{
Int xx;
Public:
Base(int x) { xx=x;}
…
};

Class derived: public base
{

Public:
derived(int x):base(x)
{

}
…
};
Main()
{
derived ob1(2);  // xx=2
}

Case 3: both derived class and base class sharing value
Class Base
{
Int xx;
Public:
Base(int x) { xx=x;}
…
};

Class derived: public base
{
Int yy;



Public:
derived(int y ):base(y)
{
yy=y;
}
…
};
Main()
{
derived ob1(2);  // xx=2  yy=2
}

Explanation of the above concept is required in answer.

Explain Virtual Base class/ discuss diamond problem and solution for it in Inheritance.

Virtual base classes, used in virtual inheritance, is a way of preventing multiple "instances" of a
given class appearing in an inheritance hierarchy when using multiple inheritance.
Consider the following scenario:

class A
{
public: void Foo() { }
};

class B : public A
{ };

class C : public A
{ };

class D : public B, public C
{ };

The above class hierarchy results in the "dreaded diamond" which looks like this:

A
/ \



B   C
\ /
D

An instance of D will be made up of B, which includes A, and C which also includes A. So you
have two "instances" (for want of a better expression) of A.
When you have this scenario, you have the possibility of ambiguity. What happens when you do
this:

main()
{
D d;
d.Foo(); // is this B's Foo() or C's Foo() ??
}

Virtual inheritance is there to solve this problem. When you specify virtual when inheriting your
classes, you're telling the compiler that you only want a single instance.

class A
{
public: void Foo()
{ }
};

class B : public virtual A
{ };

class C : public virtual A
{ };

class D : public B, public C
{ };

This means that there is only one "instance" of A included in the hierarchy. Hence
main()
{
D d;
d.Foo(); // no longer ambiguous
}

What is Runtime polymorphism/Late binding/ Virtual function? Explain with example. What
is Pure Virtual function/Abstract class?



The word polymorphism means having many forms. Typically, polymorphism occurs when
there is a hierarchy of classes and they are related by inheritance.

C++ polymorphism means that a call to a member function will cause a different function to be
executed depending on the type of object that invokes the function.

Consider the following example where a base class has been derived by other two classes:

#include <iostream>

using namespace std;

class Shape {

protected:

int width, height;

public:

Shape( int a = 0, int b = 0) {

width = a;

height = b;

}

int area() {

cout << "Parent class area :" <<endl;

return 0;

}

};

class Rectangle: public Shape {

public:

Rectangle( int a = 0, int b = 0):Shape(a, b) { }

int area () {



cout << "Rectangle class area :" <<endl;

return (width * height);

}

};

class Triangle: public Shape{

public:

Triangle( int a = 0, int b = 0):Shape(a, b) { }

int area () {

cout << "Triangle class area :" <<endl;

return (width * height / 2);

}

};

// Main function for the program

int main( ) {

Shape *shape;

Rectangle rec(10,7);

Triangle tri(10,5);

// store the address of Rectangle

shape = &rec;

// call rectangle area.

shape->area();

// store the address of Triangle

shape = &tri;



// call triangle area.

shape->area();

return 0;

}

When the above code is compiled and executed, it produces the following result:

Parent class area
Parent class area

The reason for the incorrect output is that the call of the function area() is being set once by
the compiler as the version defined in the base class. This is called static resolution of the
function call, or static linkage - the function call is fixed before the program is executed. This is
also sometimes called early binding because the area() function is set during the compilation
of the program.

But now, let's make a slight modification in our program and precede the declaration of area()
in the Shape class with the keyword virtual so that it looks like this:

class Shape {

protected:

int width, height;

public:

Shape( int a = 0, int b = 0) {

width = a;

height = b;

}

virtual int area() {

cout << "Parent class area :" <<endl;

return 0;

}



};

After this slight modification, when the previous example code is compiled and executed, it
produces the following result:

Rectangle class area
Triangle class area

This time, the compiler looks at the contents of the pointer instead of it's type. Hence, since
addresses of objects of tri and rec classes are stored in *shape the respective area() function is
called.

As you can see, each of the child classes has a separate implementation for the function area().
This is how polymorphism is generally used. You have different classes with a function of the
same name, and even the same parameters, but with different implementations.

Virtual Function

A virtual function is a function in a base class that is declared using the keyword virtual.
Defining in a base class a virtual function, with another version in a derived class, signals to the
compiler that we don't want static linkage for this function.

What we do want is the selection of the function to be called at any given point in the program
to be based on the kind of object for which it is called. This sort of operation is referred to
as dynamic linkage, or late binding.

Pure Virtual Functions

It's possible that you'd want to include a virtual function in a base class so that it may be
redefined in a derived class to suit the objects of that class, but that there is no meaningful
definition you could give for the function in the base class.

We can change the virtual function area() in the base class to the following:

class Shape {

protected:

int width, height;

public:



Shape( int a = 0, int b = 0) {

width = a;

height = b;

}

// pure virtual function

virtual int area() = 0;

};

The = 0 tells the compiler that the function has no body and above virtual function will be
called pure virtual function.

C++ Program to create a class EMPLOYEE (Calculate DA,Tax,Net Sal etc) Given that
an EMPLOYEE class contains the following members:

Date Members: Employee_Number, Employee_Name, Basic, DA, IT, Net_Sal;
Member Function: to read data, to calculate Net_Sal and to print data members;

Write a C++ program to read data on N employees and compute the Net_Sal of each
employee ( DA = 52% of Basic and Income Tax = 30% of the gross salary ).

#include<iostream.h>

#include<conio.h>

class employee

{

int   emp_num;

char  emp_name[20];

float emp_basic;

float sal;

float emp_da;



float net_sal;

float emp_it;

public:

void get_details();

void find_net_sal();

void show_emp_details();

};

void employee :: get_details()

{

cout<<"\nEnter employee number:\n";

cin>>emp_num;

cout<<"\nEnter employee name:\n";

cin>>emp_name;

cout<<"\nEnter employee basic:\n";

cin>>emp_basic;

}

void employee :: find_net_sal()

{

emp_da=0.52*emp_basic;

emp_it=0.30*(emp_basic+emp_da);

net_sal=(emp_basic+emp_da)-emp_it;



}

void employee :: show_emp_details()

{

cout<<"\n\n\nDetails of   :  "<<emp_name;

cout<<"\n\nEmployee number:      "<<emp_num;

cout<<"\nBasic salary     :  "<<emp_basic;

cout<<"\nEmployee DA      :  "<<emp_da;

cout<<"\nIncome Tax       :  "<<emp_it;

cout<<"\nNet Salary       :  "<<net_sal;

}

int main()

{

employee emp[10];

int i,num;

clrscr();

cout<<"\nEnter number of employee details\n";

cin>>num;

for(i=0;i<num;i++)

emp[i].get_details();

for(i=0;i<num;i++)



emp[i].find_net_sal();

for(i=0;i<num;i++)

emp[i].show_emp_details();

getch();

return 0;

}

Write a program to count number of objects in C++.

class ObjectCount {
static int count;

protected:
ObjectCount() {

count++;
}

public:
void static showCount() {

cout << count;
}

};

int ObjectCount::count = 0;

main()
{
ObjectCount o1,o2;
ShowCount();
}

Write a function returning object and taking object as argument. Also write suitable main
function for same.



How to return an object from the function?

In C++ programming, object can be returned from a function in a similar way as structures.

Example 2: Pass and Return Object from the Function

In this program, the sum of complex numbers (object) is returned to the main() function and
displayed.

#include <iostream>

using namespace std;

class Complex

{

private:

int real;

int imag;

public:

Complex(): real(0), imag(0) { }

void readData()



{

cout << "Enter real and imaginary number respectively:"<<endl;

cin >> real >> imag;

}

Complex addComplexNumbers(Complex comp2)

{

Complex temp;

// real represents the real data of object c3 because this function is called using code
c3.add(c1,c2);

temp.real = real+comp2.real;

// imag represents the imag data of object c3 because this function is called using code
c3.add(c1,c2);

temp.imag = imag+comp2.imag;

return temp;

}

void displayData()

{

cout << "Sum = " << real << "+" << imag << "i";

}

};

int main()

{

Complex c1, c2, c3;

c1.readData();

c2.readData();



c3 = c1.addComplexNumbers(c2);

c3.displayData();

return 0;

}

Explain use of scope resolution operator.

Scope resolution operator in C++
In C++, scope resolution operator is ::. It is used for following purposes.
1) To access a global variable when there is a local variable with same name:
// C++ program to show that we can access a global variable
// using scope resolution operator :: when there is a local
// variable with same name
#include&lt;iostream&gt;
using namespace std;

int x; // Global x

int main()
{

int x = 10; // Local x
cout<<::x;//0
cout << x; //10
return 0;

}
Output:
Value of global x is 0
Value of local x is 10

2) To define a function outside a class.
// C++ program to show that scope resolution operator :: is used



// to define a function outside a class
#include&lt;iostream&gt;
using namespace std;

class A
{
public:

// Only declaration
void fun();

};

// Definition outside class using ::
void A::fun()
{

}

3) To access a class’s static variables.
// C++ program to show that :: can be used to access static
// members when there is a local variable with same name

class Test
{

static int x;
public:

static int y;

// Local parameter 'a' hides class member
// 'a', but we can access it using ::
void func(int x)
{ // We can access class's static variable // even if there is a local variable

}
};

// In C++, static members must be explicitly defined
// like this



int Test::x = 1;
int Test::y = 2;

int main()
{

Test obj;
int x = 3 ;
obj.func(x);

return 0;
}

4) In case of multiple Inheritance:
If same variable name exists in two ancestor classes, we can use scope resolution operator to
distinguish.
// Use of scope resolution operator in multiple inheritance.
#include&lt;iostream&gt;
using namespace std;

class A
{
protected:

int x;
public:

A() { x = 10; }
};

class B
{
protected:

int x;
public:

B() { x = 20; }
};

class C: public A, public B



{
public:

void fun()
{

cout <<”A’s x is”<< A::x;
cout<<”B’s x is” <<B::x;

}
};

int main()
{

C c;
c.fun();
return 0;

}
Run on IDE
Output:
A's x is 10
B's x is 20

Write note on
1) Dynamic memory allocation vs Static allocation of object in memory

Static Allocation means, that the memory for your variables is allocated when the program
starts. The size is fixed when the program is created. It applies to global variables, file scope
variables, and variables qualified with static defined inside functions.
Eg.
Class sample
{ };
main()
{
Sample ob;
}



Dynamic memory allocation is a bit different. You now control the exact size and the lifetime of
these memory locations. If you don't free it, you'll run into memory leaks, which may cause
your application to crash, since it, at some point cannot allocation more memory.
Eg.
Class sample
{
Int  func() {return 10;}

};

main()
{
Sample *o;
O=new sample;
cout<<O->func();
delete o  ;

}

When you are done with the memory, you have to free it:
delete o  ;

2) Pointer to class
A pointer to a C++ class is done exactly the same way as a pointer to a structure and to access
members of a pointer to a class you use the member access operator -> operator, just as you do
with pointers to structures. Also as with all pointers, you must initialize the pointer before using
it.
Let us try the following example to understand the concept of pointer to a class:

#include <iostream>

using namespace std;

class Box {

public:

// Constructor definition

Box(double l = 2.0, double b = 2.0, double h = 2.0) {



cout <<"Constructor called." << endl;

length = l;

breadth = b;

height = h;

}

double Volume() {

return length * breadth * height;

}

private:

double length; // Length of a box

double breadth; // Breadth of a box

double height; // Height of a box

};

int main(void) {

Box Box1(3.3, 1.2, 1.5); // Declare box1

Box Box2(8.5, 6.0, 2.0); // Declare box2

Box *ptrBox; // Declare pointer to a class.

// Save the address of first object

ptrBox = &Box1;

// Now try to access a member using member access operator

cout << "Volume of Box1: " << ptrBox->Volume() << endl;

// Save the address of second object

ptrBox = &Box2;



// Now try to access a member using member access operator

cout << "Volume of Box2: " << ptrBox->Volume() << endl;

return 0;

}

When the above code is compiled and executed, it produces the following result:

Constructor called.
Constructor called.
Volume of Box1: 5.94
Volume of Box2: 102

1. Explain difference between copy constructor and object assignment
Consider the following C++ program.

#include<iostream>
#include<stdio.h>

using namespace std;

class Test
{
public:

Test() {}
Test(const Test &t)
{

cout<<"Copy constructor called "<<endl;
}
Test& operator = (const Test &t)
{

cout<<"Assignment operator called "<<endl;
}

};

int main()
{

Test t1, t2;
t2 = t1;
Test t3 = t1;
getchar();
return 0;



}
Run on IDE
Output:
Assignment operator called
Copy constructor called

Copy constructor is called when a new object is created from an existing object, as a copy of the
existing object (see this G-Fact). And assignment operator is called when an already initialized
object is assigned a new value from another existing object.

t2 = t1; // calls assignment operator, same as "t2.operator=(t1);"
Test t3 = t1; // calls copy constructor, same as "Test t3(t1);"


