18EVE15

(10 Marks)

(06 Marks)

Semester M.Tech. Degree Examination, June/July 2019

Digital VLSI Design

Max. Marks: 100

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Derive the expression for threshold voltage V_T interms of body effect and surface potential.
 - b. Derive expression for V_{OH}, V_{OL}, V_{IL} and V_{IH} interms of threshold voltage, for n type depletion mode load inverter. (10 Marks)

OF

- 2 a. Calculate the threshold voltage, V_{TO} at $V_{SB} = 0V$, for a polysilicon gate n channel MOS transistor, with the following parameters: substrate doping density, $N_A = 10^{16}$ cm⁻³, polysilicon gate density (doping), $N_D = 2 \times 10^{20}$ cm⁻³. Gate oxide thickness $t_{ox} = 400 \, \text{Å}$, oxide interface fixed charge density, $NO_x = 4 \times 10^{10}$ Cm⁻² and assume $\phi_{F(gate)} = 0.55V$, E_{si} , the silicon permittivity as $11.7 \times 8.85 \times 10^{-14}$ F/cm and E_{ox} , permittivity of gate oxide in $3.97 \times 8.85 \times 10^{-14}$ F/cm.
 - b. Explain channel length modulation and substrate Bras effect in MOSFET operation.
 (10 Marks)

Module-2

- a. Explain 3 stage ring oscillator circuit consisting of identical inverters. (05 Marks)
 - b. Explain RC delay and the Elmore delay models of an interconnect line. (10 Marks)
 - c. Show that switching power dissipation of CMOS inerter is given by $P_{avg} = C_{load} V_{dd}^2 f$, where f is the switching frequency. (05 Marks)

OR

- 4 a. Obtain expression for Z_{PHL} and Z_{PLH} for CMOS inverter interms of V_T and V_{DD} and capacitance. (10 Marks)
 - b. With suitable circuit explain, how to estimate interconnect parasities and capacitance.

Module-3

- 5 a. Explain Hot electron injection mechanism and Fowler Nordheim tunneling mechanism in Flash memory. (08 Marks)
 - b. Explain briefly flash memory using NOR cell configuration. (06 Marks)
 - c. Write a short note on FRAM.

- OR

 6 a. Explain operation of three transistor DRAM cell with pull up and read/write circuitry with help of read and write timing diagrams. (10 Marks)
 - b. Explain the operation full CMOS SRAM cell with neat circuit diagram. (07 Marks)
 - c. Differentiate DRAM and SRAM. (03 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-4

- 7 a. Explain how to overcome threshold voltage drop in integrated circuits using voltage boot strapping technique. (10 Marks)
 - b. Explain briefly with suitable circuit structure of ratioless synchronous dynamic logic.

(05 Marks)

c. Explain the static behaviour of BICMOS inverter.

(05 Marks)

OR

- 8 a. Briefly explain cascading problem in dynamic CMOS logic. (08 Marks)
 - Explain NP Domino logic circuit or NORA CMOS logic for high performance dynamic CMOS circuits.
 (06 Marks)
 - c. Explain the Ebers Moll equivalent circuit diagram of the npn BJT operating in the Forward active mode. (06 Marks)

Module-5

- 9 a. Explain ESD protection in human body model, machine model and charged device model.
 (08 Marks)
 - b. Explain parametric yield and performance variability in design for manufacturability.

 (06 Marks)
 - c. Explain circuit diagram of a pierce crystal oscillator circuit in onchip clock generation and distribution.

 (06 Marks)

OR

10 a. Explain the causes for latch up and guidelines for avoiding latch up.

(10 Marks)

b. Explain ESD protection in input and output circuits.

(10 Marks)

* * * * *