First Semester M.Tech. Degree Examination, Dec.2019/Jan.2020 **ASIC Design**

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the following in brief with relevant diagram.
 - Standard cell based ASICs
 - Gate array based ASIC (channeled, channel less and structured gets array). (10 Marks)
 - Explain in detail the steps involved in ASIC design.

(10 Marks)

- Explain the functioning and limitation of conventional Ripple Carry Adder [RCA], with 2 relevant logic equations and cell diagram.
 - Explain Wallace tree multiplier.

(10 Marks)

Module

Show that $\hat{D} = NF^{1/N} + P + Q$. 3

(10 Marks)

Calculate the optimal stage effort and size of transistor for the circuit shown below in Fig.Q3(b). (10 Marks)

Fig.Q3(b)

OR

- Explain the ACT1 logic module with the help of Shannon's expansion theorem. (10 Marks)
 - Explain the Xilinx XC3000 CLB with relevant diagram.

(10 Marks)

4 FEB 2020

Module-3

Explain hierarchical design with suitable example. 5

(10 Marks)

Explain vectored instances and buses for 16-bit D-latch and draw the diagram for 4-bit D-latch with cardinalities. (10 Marks)

1 of 2

OR

- a. List steps in ASIC physical design and describe goals and objective of each step. (05 Marks) 6
 - With relevant equations, explain KL algorithm Construct the connectivity matrix for the network shown in the below Fig.Q6(b). Also find the gain in the network graph shown if:
 - Nodes 1 and 6 are swapped
 - ii) Nodes 2 and 8 are swapped.

(15 Marks)

Fig.Q6(b)

Module-4

- Explain the following:
 - i) Power planning
 - ii) Clock planning.

(10 Marks)

Explain the concept of measurement of delay in floor planning.

(10 Marks)

OR

Write an algorithm for iterative placement improvement method and explain briefly.

(10 Marks)

- Explain the following:
 - i) Placement using simulated annealing
 - ii) Timing driven placement method.

(10 Marks)

Module-5

- Explain the goals and objectives of detailed routing and explain the routing method in an (10 Marks) ASIC physical design. (10 Marks)
 - Explain the goals and objectives of global routing in detail.

- Explain the following
 - i) Left edge algorithm
 - ii) Area-routing algorithm.

(10 Marks)

- b. Explain the following special routing techniques.
 - i) Clock routing
 - ii) Power routing.

4 FEB 2020 (10 Marks)