First Semester M.Tech. Degree Examination, Dec.2018/Jan.2019

Advanced Engineering Mathematics

Time: 3 hrs.

Max. Marks: 80

BANGAL Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Define vector spaces, sub spaces. Show that the set $S = \{(1, 0, 1), (1, 1, 0), (-1, 0, -1)\}$ is linearly dependent in $V_3(R)$. (08 Marks)

b. Let $T:V \to W$ be a linear transformation defined by T(x, y, z) = (x+y, x-y, 2x+z). Find the range, null space, rank and nullity. Also verify the rank-nullity theorem. (08 Marks)

OR

2 a. Find the matrix representation of linear transformation $T:R_2 \rightarrow R_3$ such that T(-1, 1) = (-1, 0, 2), T(2, 1) = (1, 2, 1). (08 Marks)

b. Find the linear transformation T: $R^3 \rightarrow R^3$. Such that T(1, 1, 1) = (1, 1, 1); T(1, 2, 3) = (-1, -2, 3); T(1, 1, 2) = (2, 2, 4) (08 Marks)

Module-2

3 a. Use Given's method to find eigen values of the symmetric matrix.

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$$

(08 Marks)

b. Find the singular value decomposition of

$$A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 2 & -2 \\ -2 & -2 & 6 \end{pmatrix}$$

(08 Marks)

OR

4 a. Use the Gram-Schmidt orthogonalization process to construct an orthogonal set of vectors

form the linearly independent set
$$\{x_1, x_2, x_3\}$$
 where $x_1 = \begin{bmatrix} -4 \\ 3 \\ 6 \end{bmatrix}$, $x_2 = \begin{bmatrix} 2 \\ -3 \\ 6 \end{bmatrix}$, $x_3 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$.

(08 Marks)

b. Construct a QR decomposition for the matrix

$$A = \begin{pmatrix} -4 & 2 & 2 \\ 3 & -3 & 3 \\ 6 & 6 & 0 \end{pmatrix}$$

(08 Marks)

Module-3

5 a. Derive Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ and deduce $\frac{d}{dx} \left(f - y' \frac{\partial f}{\partial y'} \right) - \frac{\partial f}{\partial x} = 0$.

Find the extremals of the functional $\int_{0}^{\pi} [(y')^{2} - y^{2} + 4y \cos x] dx$ satisfying y(0) = 0; $y(\pi) = 0$.

(08 Marks)

OR

Find a function y(x) for which $\int [(y')^2 + x^2] dx$ is a stationary function given that $\int y dx =$ 6

y(0) = 0; y(1) = 0. Find the shortest distance between parabola $y = x^2$ and straight line x - y = 5.

(08 Marks) (08 Marks)

Module-4

A random variable x has the following probability function:

X	0	1	2	3	4	5	6	7
p(x)	0	k	2′k	2k	3k	k^2	$2k^2$	$7k^2+k$

i) Find the value of the k.

ii) Evaluate: (1) p(x < 6) (2) $p(x \ge 6)$ (3) p(0 < x < 5)

iii) Mean and variance of the distribution.

(08 Marks)

Find the moment generating function of the exponential distribution

$$f(x) = \frac{e^{-\frac{x}{c}}}{c}; \quad 0 \le x \le \infty, c > 0$$

Hence find mean and standard deviation.

(08 Marks)

OR

The length of telephone conversation in a booth has been an exponential distribution and found on an average to be 5 minutes. Find the probability that a random call made from this (ii) Between 5 and 15 minutes. booth: (i) Ends less than 5 minutes

The mean weight of 500 students is 151 kg and standard deviation 15 kg. Assuming the weights are normally distributed. Find how many students weight:

(i) Between 120 and 150

(ii) Less than 150 (iii) More than 151

(08 Marks)

Module-5

The joint pdf of a two continuous random variables x and y is given by 9

$$f(x,y) = \begin{cases} \frac{x+y}{3} & 0 \le x \le 1; \ 0 < y < 2 \\ 0 & \text{otherwise} \end{cases}$$

Find: i) E(X) ii) E(Y)

(08 Marks)

Define:

i) Stationary random process

ii) Ergodic random process

iii) Time auto correlation

iv) Gaussian random process

(08 Marks)

Find the probability that (i) $x(10) \le 8$ (ii) $|x(10) - x(6)| \le 4$; where x(t) is a Gaussian process 10 (08 Marks) with r(t) = 10 and $c(t_1, t_2) = 16 e^{-|t_1 - t_2|}$

Determine: (i) Marginal distribution of x and y (ii) Covariance (iii) Correlation coefficient (08 Marks) for the following joint distribution.

HO WI	IIB.	Jonne	distill	Julion
	У	-3	2	4
X				
1		0.1	0.2	0.2
3	£	0.3	0.1	0.1

CMRIT LIBRARY BANGALORE - 560 03