	2.		
USN	112		

16/17MDE12

First Semester M.Tech. Degree Examination, Dec.2017/Jan.2018 Finite Element Method

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. What are the requirements to be satisfied for a finite element method solution for convergence? (04 Marks)
 - b. Using the Galerkin approach determine the displacement of the bar shown in Fig.Q1(b). Assume $u = c_0 + c_1x + c_2x^2$. (12 Marks)

OR

- WANGALGLE 540 LU?
- Explain the elimination approach to handle the boundary condition in finite element solution procedure. (04 Marks)
 - Using the variational approach obtain the governing Euler-Lagrange equation and the natural (force) boundary conditions of bar shown in Fig.Q2(b)

Module-2

A vertical bar is subjected to self weight and load P = 300 kN as shown in Fig.Q3. The temperature of the bar is raised from 20° to 60°C. Find the nodal displacements, stress induced and the reaction at the support.

$$p = 300 \text{ kg/m}^3$$
 $p = 7800 \text{ kg/m}^3$
 $p = 7800 \text{ kg/m}^3$

BANGALORE - 550 037

CHILLY LAND OF

OR

- 4 a. For a two noded axial element show that strain displacement matrix is B = [-1 1] where,

 Le-element length. (04 Marks)
 - b. For the beam shown in Fig.Q4(b) assemble the global stiffness matrix and load vector.
 (12 Marks)

- Module-3
- 5 a. Obtain shape functions for the mid side nodes of 8 noded quadrilateral element. (08 Marks)
 - b. Obtain the shape functions of 8 noded hexahedral element. (08 Marks)
 - OR
- 6 a. For the element shown in Fig.Q6(a). Find P(x, y) at ξ 0.5 η = 0.5.

(08 Marks)

Fig.Q6(a)

An axisymmetric body with linearly distributed load on a conical surface is shown in Fig.Q6(b). determine the elemental equivalent point loads at nodes 2, 4 and 6.
 Coordinates: P(2) = (r₂) = (20, 70)

$$P(4) = (r_2) = (40, 55)$$

$$P(6) = (r_2) = (60, 40)$$

All dimensions in mm.

Fig.Q6(b) 2 of 3 CMRIT LIBRARY BANGALORE - 560 037 Module-4

7 For triangular membrane element derive the strain displacement matrix.

(16 Marks)

OR

8 a. What assumptions are made in the analysis of thin plate?

(04 Marks)

b. Assuming the shell element to be straight obtain the stiffness matrix of 2 – noded element.

(12 Marks)

Module-5

- 9 a. Write down the lumped mass matrix of:
 - i) bar element ii) truss element iii) CST element iv) beam element.

(08 Marks)

b. For bar shown in Fig.Q9(b) determine the first two natural frequencies. Use 2 element models.

(08 Marks)

OR

10 A slender cantilever beam is modelled as a single element. Find the mode shapes. (16 Marks)

