Second Semester M. Tech. Degree Examination, Dec. 2017/Jan 2018

Modern DSP

Time: 3 hrs.

a.

Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Define signals and system. Explain classifications of signals with example. (14 Marks)
 - b. Consider the analog signal $x_a(t) = 3\cos 2000\pi t + 5\sin 6000\pi t + 10\cos 12000\pi t$:
 - What is the Nyquist rate for this signal?
 - ii) Assume now that we sample this signal using a sampling rate Fs = 5000 samples/s. What is the discrete time signal obtained after sampling? (06 Marks)
- Consider the signal $x(n) \neq a^n u(n)$, 0 < a < 1. The spectrum of this signal is sampled at frequencies $\omega_k = 2\pi k/N$, k = 0, 1, ..., N-1. Determine the reconstructed spectra for a = 0.8(08 Marks) when N = 5 and N = 50.
 - State and prove the following properties:
 - i) Circular time shift of a sequence.
 - ii) Circular correlation.

(06 Marks)

Explain the use of the DFT in linear filtering.

(06 Marks)

Explain characteristics of practical frequency-selective filters.

(06 Marks)

Explain the design of linear phase FIR filter using windows.

(06 Marks)

(08 Marks)

Determine the coefficients of a linear-phase FIR filter of length M = 15 which has a symmetric unit sample response and a frequency response that satisfies the conditions

Hr
$$\left(\frac{2\pi k}{15}\right) = 0.4$$
, $K = 0,1,2,3$
 0.4 , $K = 4$
 0 , $K = 5,6,7$

- Determine the order and the poles of a type 1 lowpass Chebyshev filter that has a 1 dB ripple in the passband, a cutoff frequency Ω_p = 1000 π , a stop band frequency of 2000 π , and an (12 Marks) attenuation of 40 dB or more for $\Omega \geq \Omega_s$.
 - Explain the frequency transformation in digital domain.

(08 Marks)

- Explain the design and implementation for sampling rate conversion using polyphase filter (10 Marks) structure.
 - Explain the sampling rate conversion of bandpass signals. b.

(10 Marks)

- Briefly explain the practical applications of multirate signal processing.
- (08 Marks)
- Explain the analysis and synthesis of uniform DFT filter banks.

(12 Marks)

Write a note on two-channel quadrature mirror filter bank.

- (10 Marks)
- Define adaptive filter. Explain steps used to implement LMS algorithm.
- (10 Marks)

Describe the applications of adaptive filter.

- (08 Marks)
- Derive the filter coefficient updating equation using RLS algorithm.

(12 Marks)

* * * * *