INSTITUTE OF TECHNOLOGY

Internal Assesment Test -2

 $-H_4$

	PART B	[20]		
3	The open loop transfer function of a unity feedback system is $G(s) = \frac{K(s+2)}{s(s+4)(s+10)}$ Find K to get PM = +30°		CO6	L4
4	Sketch the Bode plot for the transfer function $G(s)H(s) = \frac{Ks^2}{(1+0.02s)(1+0.2s)}$ Determine the value of K for the gain cross over frequency to be 5 rad/sec.	[20]	CO6	L4
5	For a certain feedback system $G(s)H(s) = \frac{3(s+1)(s+6)}{s^2(s^2+18s+400)}$. Sketch the Bode plot and comment on G.M, P.M and stability.	[20]	CO6	L4

3	PART B The open loop transfer function of a unity feedback system is $G(s) = \frac{K(s+2)}{s(s+4)(s+10)}$	[20]	CO6	L4	
4	Find K to get PM = +30° Sketch the Bode plot for the transfer function $G(s)H(s) = \frac{Ks^2}{(1+0.02s)(1+0.2s)}$ Determine the value of K for the gain cross over frequency to be 5 rad/sec.	[20]	CO6	L4	
5	For a certain feedback system $G(s)H(s) = \frac{3(s+1)(s+6)}{s^2(s^2+18s+400)}$. Sketch the Bode plot and comment on G.M, P.M and stability.	[20]	CO6	L4	