USN					

			Intomal	A agaggment T	700¢ 1	March 2	010		ACCREDITE	D WITH A+ 0	RADE B	Y NAAC
~ .			Internal	Assessment T	est 1			_				
Sub:	Heat Transfer			T	T	Sub Code:	15ME63	Brar A & B	nch: M	IE _		
Date:		06/03/19 Duration: 90 min Max Marks: 50 Sem / Sec:								0		
> >	Attempt any 5 questions Use of Heat Transfer Data Hand Book is permitted								MARKS		0	RBT
1 (a)								able	[06]		O1	L1
(b)	Explain the terms : (i) Thermal Conductivity (ii) Thermal Resistance								[04]		01	L2
2	Derive the general three dimensional heat conduction equation in Cartesian coordinate and state the assumption made.							sian	[10]		01	L3
3	layer and an to 60cm. The external tem thermal cond W/mK respectadiation be outside surfate.	insulating rate mean ten perature is 3 ductivities of ectively. The stween gase ace and atmosphere	naterial or nperature 80°C and the f refractor e combined s and refosphere is	onstructed of a the outside. To of the gases whe material introduced y and insulating coefficient of ractory surfaction with the coefficient of th	The to within terface is nd: i)	otal wall thin the furnate temperaturaterials are transfer by 200 W/m ² . Thickness	ckness is lim ce is 850°C, are is 500°C. 2 W/mK and y convection 2K and betw of each mate	the The 0.2 and veen rial.	[10]	C	O1	L3
4	specified ter constants. T while the su	nperature ra he wall surf rface at x=I	ange as kange at x=0 ace at x=0 acc is maint	ess L whose t = $k_o(1+bT^2)$ whose is maintained ained at T_2 . A	here l at a Assum	k ₀ and b a constant tening steady	re two speci emperature of one-dimensi	fied T ₁ ,	[10]	C	01	L3
5	A truncated cone like solid has its circumference insulated and heat flows along the axis. The area of section at x is given by $A = \frac{\pi}{4x^3}$ and the faces are at 0.075 m and 0.225 m. The thermal conductivity of the material varies as $k = 0.5$ (1 + 5 × 10 ⁻³ T) W/mK. The surface at x = 0.075 m is at 300°C and the surface at x = 0.225 is at 50°C. Determine the rate of heat flow.							5 m	[10]	C	O1	L3
6	A 30 mm of insulation ear of one mate transfer if b	outside diar ach having a crial is five etter insulat Assume the	neter steam thickness times the ing mater	m pipe is to s of 25 mm. T other. Determial is next to nd inside surfa	be of the anine the p	verage ther percentage pipe than w	mal conducti decrease in hen it forms	vity heat the	[10]	C	01	L3
7	A wire of 8r having k=0 temperature	nm diamete 0.174W/mK. is 25°C. Fe	Heat tr or maxim	perature of 60° ansfer coeffic um heat loss dissipation du	cient find	h=8W/m ² the minim	K and amb	oient	[10]	С	O1	L3

16) The law governing the three basic modes of heat transfer are -

- 1) CONDUCTION
- 2) CONVECTION
- 3) RADIATION.

CONDUCTION:

fourier's can: This can states that the time rate of heat transfer through a material is proportional to the negotive gradient in the temperature and to the area, at the right angles to that gradient

-through which the heat-flows.

where, k = Thermal conductivity, w/mk

X FIG: CONDUCTION

CONVECTION:

Newton's Law of coding states that the rate of heat transfer of a body is climatly proportional to the difference in the temperature between the body and its surrounding provided. the temperature difference is small and the nature of rodiating surface remains the same

Q= hAAT where, h = convective heat transfer coefficient, w/m2k

RADIATION:

Stefan-Boltzmann lan states that the total radiant energy emitted a surface is proportional to the fourth power of its absolute temperature!

where, F = enegy flow J = Stefan Boltzmann constant = 5.67×10-8 4/m2k9 T = Temperature, k.

FIG: RADIATION

- i) Thermal conductivity: is the heat energy transferred per unit time and fer unit surface area, divided by the temperature difference. (P)
 - ii) Thermal Resistance: is the heat property and a measurement of a temperature difference by which an object resist heat flow.
- THE GENERAL 3D HEAT CONDUCTION EQUATION IN CARTESIAN COORDINATE-2.

consider a cuboidalelement of dimension dxxdyxdx for the element.

Energy Balance equation can be stren as

EIN-EOUT + Egen = Est

Where,

EIN-Energy entering the element,

East - Energy leaving-the element?

tgen - Energy generated within the element

Est - Energy stored within the element

$$(E_{IN}-E_{OUT})_{x} = q_{x} - p_{x+dx}$$

$$= q_{x} - (q_{x} + \frac{\partial}{\partial n} q_{x} dx)$$

$$= -\frac{\partial}{\partial n} q_{x} dx$$

considering, the material is homogeneous and isotropic.

$$(E_{IN}-E_{OUT})_{z}=\frac{k}{\partial x^{2}}\frac{\partial^{2}T}{\partial x^{2}}dxdydx$$

similarly,

$$(E_{IN}-E_{OUT})_{r}=K\frac{\partial^{2}T}{\partial y^{2}}dxdydx$$

$$(E_{IN}-E_{OUT})_{\underline{x}} = k \frac{\partial^{2}T}{\partial \underline{x}^{2}} dx dy d\underline{x}$$

$$\vdots E_{IN}-E_{OUT} = k \left[\frac{\partial^{2}T}{\partial x^{2}} + \frac{\partial^{2}T}{\partial y^{2}} + \frac{\partial^{2}T}{\partial z^{2}}\right] dx dy d\underline{x}$$

$$= K(\nabla^{2}T) dx dy d\underline{x}$$

consider the heat generation Uper unit volume inside the element

to be at rate of generation within the element will equal to

NON,

$$K(\nabla^2 T) dxdydx + q dxdydx = gc \frac{\partial T}{\partial t} dxdydx$$

 $K(\nabla^2 T) + q = gc \frac{\partial T}{\partial t}$
 $+ q dxdydx = gc \frac{\partial T}{\partial t}$

$$\nabla^2 T + \frac{\dot{v}_5}{k} = \frac{fc}{k} \cdot \frac{\partial T}{\partial t}$$

steady state theat conduction

$$\nabla^2 T + \frac{95}{k} = 0$$
 Poisson's Eqn.

Heat conduction with no heat generation

steady state of theat conduction with no heat generation - Laplace egn

$$k_{1} = k_{1} \qquad k_{2} \qquad k_{3}$$

$$k_{1} = k_{2} \qquad k_{3} \qquad k_{3} \qquad k_{4} \qquad k_{5} \qquad k_{5$$

Consider a plane wall with surface temperature T, of T2 and thickness L'with variable thermal conductivity.

Thermal conductivity of the wall - $K = K_0(1+bT^2)$

$$8 \int_{0}^{L} dx = -k_{0}A \int_{0}^{T_{0}} (L+bT^{2}) dT$$

$$\Im\left[x\right]_{0}^{T} = -k_{0}A\left[T + \frac{bT^{3}}{3}\right]_{T}^{T_{2}}$$

$$Q.L = -k_0 A \left[\left(T_2 - T_1 \right) + \frac{1}{3} \left(T_2^3 - T_1^3 \right) \right]$$

$$Q.L = -k_0 A \left[(T_2 - T_1) + \frac{b}{3} (T_2 - T_1) (T_2^2 + T_2 T_1 + T_1^2) \right]$$

$$9.L = -k_0 4 \left[\left(T_2 - T_1 \right) \left[1 + \frac{b}{3} \left(T_1^2 + T_1 T_2 + T_2^2 \right) \right] \right\}$$

$$S = k_0 \left[1 + \frac{b}{3} \left(T_1^2 + T_1 T_2 + T_2^2 \right) \right] A \times \frac{\left(T_1 - T_2 \right)}{L}$$

Let km be the mean thermal conductivity of wall material

$$S = \frac{k_m A(T_1 - T_2)}{1}$$

$$k_m = k_o(1+bT_m^2)$$

Where, Im = mean temperature.

$$Q = k_o(1+bT_m) + x(T_1-T_2)$$
 (2)

on comparing Of©

$$T_{m} = \sqrt{\frac{T_{1}^{2} + T_{1}T_{2} + T_{2}^{2}}{3}}$$

$$T_{1}$$

$$k = k_{0}(L+bT^{2})$$

$$0$$

$$L$$

$$\lambda$$

$$\frac{2 \cdot 1.0749}{27 \text{ kl}} = \frac{1.0749}{27 \text{$$

$$R_{H_2} = \frac{\ln \left(15 \times 10^{-3} \right)}{2 \pi (5 \text{k}) l} + \frac{\ln \left(\frac{40}{15} \right)}{2 \pi \text{k} l}$$

$$= \frac{1}{2 \pi \text{k} l} \left[\ln \left(\frac{40}{15} \right) + \ln \left(\frac{65}{40} \right) \right]$$

$$= \frac{1}{2 \pi \text{k} l} \left[0.1961 + 0.4855 \right] = \frac{1}{2 \pi \text{k} l} \times (0.6816)$$

So, in first case the Rth, value is more, so heaf transfer will be lesser.

1.0779-0.6816 $\times 100 = 58.14$ /

0.6816

$$k = 0.174 \, \text{m/mk}$$

$$h = 8 \, \text{m/m/k}$$

$$r_c = \frac{k}{h} = \frac{0.174}{8} = 0.0218 \, \text{m}$$

$$f_c = \frac{r_c - r_1}{8} = 0.0218 - 41 \times 10^{-3} = 0.0178 \, \text{m}$$

$$f_c = 17.8 \, \text{mm}$$

$$\delta_{N} = \frac{T_{1} - T_{2}}{\frac{1}{2\pi r_{c}} \ln \left(\frac{r_{c}}{r_{1}}\right) + \frac{1}{2\pi r_{c}} \ln r_{c}}$$

$$\frac{Q_{H}}{2\pi 0.174} = \frac{60-28}{\frac{1}{4\times10^{-3}}} + \frac{1}{2\pi(0.0218)\times8}$$

$$= 14.2 H/m.$$

$$\frac{9_{H/o}}{l} = \frac{T_1 - T_2}{\frac{1}{h(2\pi\sigma_i l)}} = \frac{60 - 25}{8(2\pi (4\times 10^{-3}))} = \frac{7.037 \text{ W/m}}{8(2\pi (4\times 10^{-3}))}$$

$$\circ/\circ$$
 increase in heat dissipation =
$$\frac{14.2 - 7.037}{7.037} \times 100$$

$$= 101.79.7.$$