

Solution Internal Assessment Test 1 – March 2019

Sub:	PAVEMENT DESIGN			Sub Co		15CV833/10CV833	Branch:	CIVIL		
Date:				Max Marks:	50	Sem /		VIII A, VIII B a		
Part A is compulsory and Answer any one question from Part B Assume any missing data suitably. Provide neat sketches wherever necessary PART A							MARKS			
1	(a) Critically compare flexible pavement and rigid pavement.								[08]	
Particular				Flexible pavement			Rigid pavement			
	S. N									
	Cross section		with the materials of paveme	It consists of a series of layers with the highest quality materials at or near the surface of pavement.			It consists of one layer Portland cement concrete slab or relatively high flexural strength. RIGID PAVEMENT			
			Ba: Subk	Surface Course Base Course Subbase Course Subgrade			Surface course is of concrete Surface Course Base Course Subgrade It is able to bridge over localized failures and area of inadequate support.			
	Characteristic 2			the deform and subseque face.		layers				
	3	Load transfo	aggregate friction a	8		-				
	Design Pavement design is gramater influenced by the subgrater strength.		•	Flexural strength of concrete is a major factor for design.		is				
Distribution of load			•		the	area	a of subgrade beca	tes load over a wide lbgrade because of its and high modulus of		
				Ba Su Se	n Pattern rface Lay se Cours bbase lected La bgrade	yer se		Load Distribution	Concrete Layer Subbase Subgrade	

6	Distribution of stresses	Flexible Pavement Subgrade	Rigid Pavement Subgrade	
7	Design life	15-20 years	20-40 years	
8	Temperature stresses	No thermal stresses are induced as the pavement have the ability to contract and expand freely	Thermal stresses are more vulnerable to be induced as the ability to contract and expand is very less in concrete	
9	Deformations	Flexible pavements have self healing properties. Settlements due to heavier wheel loads are recoverable to some extent.	Any excessive deformations occurring due to heavier wheel loads are not recoverable, i.e. settlements are permanent.	
10	Overall cost	Have low completion cost but repairing cost is high	Have low repairing cost but completion cost is high	
11	Maintenance cost	Have low life span (High Maintenance Cost)	Life span is more as compare to flexible (Low Maintenance Cost)	
12	Effect of oil spills	Damaged by Oils and Certain Chemicals	No Damage by Oils and Greases	
13	Curing period	Road can be used for traffic within 24 hours	Road cannot be used until 14 days of curing	
14	Colour and visibility	Poor visibility at night due to its black colour	Better visibility at night owed to its white/gray colour	
15	Design parameter of subgrade	CBR value	Modulus of subgrade reaction (k)	

(b) Define ESWL. How ESWL is determined for dual wheel load assembly using equal stress and deflection criteria. Explain briefly.

Equivalent single wheel load (ESWL) is the single wheel load having the same contact pressure, which produces same value of maximum stress, deflection, tensile stress or contact pressure at the desired depth. The procedure of finding the ESWL for equal stress criteria is provided below. This is a semi-rational method, known as Boyd and Foster method, based on the following assumptions:

[08]

- > Equivalency concept is based on equal stress;
- > Contact area is circular;
- ➤ Influence angle is 45°; and
- > Soil medium is elastic, homogeneous, and isotropic half space.

ESWL can be estimated by three ways

- (i) By equivalent vertical stress criteria
- (ii) By equivalent deflection criterion

By equivalent vertical stress criteria: Boyd and Foster developed a semirational method for determining ESWL. Here it is assumed the ESWL varies with pavement thickness. For thickness smaller than half the clearance between the wheels, ESWL is equal to one half of the total load. For thickness greater than twice the centre to centre spacing of tires, ESWL is equal to the total load indicating the stresses overlap completely. By assuming a straight line relationship between pavement thickness and wheel load on logarithmic scales, the ESWL for any intermediate pavement thickness can be estimated.

Foster and Ahlvin's chart can also be used to determine the ESWL based on Boussinesq's theory based on the concept of equivalent vertical stresses. Here we compute the vertical stresses developed at three critical points using the charts and the procedure is as follows:

$$[\sigma_z]_{ESWL} = [\sigma_z]_{Dual\ Wheel} \ \left[\left[\frac{\sigma_z}{q_s}\right] \times q_s\right]_{ESWL} = \left[\left[\frac{\sigma_z}{q_d}\right] \times q_d\right]_{Dual\ Wheel}$$

Since area remains constant

$$\left[\left[\frac{\sigma_z}{q_s}\right] \times P_s\right]_{ESWL} = \left[\left[\frac{\sigma_z}{q_d}\right] \times P_d\right]_{Dual\ Wheel}$$

Or

$$\frac{P_s}{P_d} = \frac{\sigma_z/q_d}{\sigma_z/q_s}$$

Foster and Ahlvin's chart can also be used to determine the ESWL based on Boussinesq's theory based on the concept of equivalent deflection criteria. Here we compute the deflections developed at three critical points using the charts and the procedure is as follows:

$$w_s = \frac{q_s a F_s}{E}$$

And

$$w_d = \frac{q_d \alpha F_d}{E}$$

Since a, E and total deflection remains constant,

$$w_s = w_d$$

Or

$$q_s F_{s=} q_d F_d$$

Critical positions for vertical stresses and deflections

Pressure exerted =
$$\frac{44 \times 10^3}{\pi/4 \times (2a)^2} = 0.7 \times 10^6$$

$$8 = \frac{1.5 \times 0.7 \times 141.44}{3.54} \times F$$

Or F = 0.19

From the graph, h/a=3.6

Or h=510 mm

- (b) A dual wheel assembly has 52 kN load on each wheel with a contact pressure of 0.7 N/mm2. If the clear gap between the two wheels is 300 mm, using the stress chart and determine the vertical stress values at a depth of 0.60 m due to dual wheel loads at stress points as follows:
 - Vertically below the centre of dual wheel load assembly
 - > Vertically below the centre of left wheel
 - > At radial distance of 0.80 m from centre of left wheel towards other wheel. Use Chart 2.

Pressure exerted =
$$\frac{52 \times 10^3}{\pi/4 \times (2a)^2} = 0.7 \times 10^6$$

Or a = 0.154 m

Centre to center distance = 0.163+0.3+0.163=0.626 m

Given z = 0.6 m

z/a = 0.6/0.154=3.9

Case 1: $r = 0.608 \times 0.5 = 0.304 \text{ m}$

r/a = 0.304/0.154 = 1.97

$$\frac{\sigma_z}{q}=0.04$$

Or $\sigma_z = 0.04 \times 0.7 \times 10^6 = 28 \, kPa$

Since, there are to wheels, $\sigma_z = 56 kPa$

Case 2:

$$r = 0$$
, from left wheel

$$\sigma_z/q=0.082$$

kPa

Total stress =
$$5.6+43.4 = 49 \text{ kPa}$$

Total $\sigma_z = 70.7 \, kPa$

For right wheel

r = 0.608, from right wheel;

r/a = 0.608/0.154 = 3.95

$$rac{\sigma_z}{q}=0.019$$
 Or $\sigma_z=0.019 imes0.7 imes10^6=$

[09]

	Case 3:		
	For left wheel	For right wheel	
	r = 0.8 m	r = 0.8 - 0.604 = 0.196 m	
	r/a = 0.8/0.154 = 5.19	r/a = 0.196/0.154 = 1.27	
	$\frac{\sigma_z}{q} = 0.008$	$\frac{\sigma_z}{q} = 0.062$	
	q	q	
	Or $\sigma_z = 0.02 \times 0.6 \times 10^6 =$	Or $\sigma_z = 0.09 \times 0.6 \times 10^6 =$	
	5. $6kPa$ Total stress = 5.6+43.4 = 49 kPa	43.4kPa	
	(c) Design the flexible pavement by triaxial method	using the following data:	[09]
	E-value of subgrade soil = 110 kg/cm2		[]
	E-value of base course = $440 \text{ kg/cm}2$		
	E-value of 8 cm thick bituminous course = 1200 l	sg/cm2	
	Design wheel load = 5100 kg		
	Radius of contact = 16 cm		
	Traffic coefficient = 1.5		
	Rainfall coefficient = 0.6		
	Design deflection = 0.25 cm		
	Thickness of pavement = $ \left\{ \sqrt{\left(\frac{3PXY}{2\pi E_s \Delta} \right)^2} \right $	a^2 $\left[\frac{E_s}{E_p}\right]^{1/3}$	
	Thickness of pavement = $ \sqrt{\frac{3 \times 5100 \times 1.5}{2 \times \pi \times 110 \times 0}} $		
	= 49.2 cn	ı	
		4.10	
	$\frac{t_{surface}}{t_{base}} = \left[\frac{E_{base}}{E_{surfa}}\right]$	2	
	$t_{base} - E_{surfa} $	ce	
	8 [440]	1/3	
	$\frac{8}{t_1} = \left[\frac{440}{1200}\right]$		
	t_{hase} [1200]		
	. 44.40 ' 1 . 0 . 11'		
	$t_{base} = 11.18 \ cm = equivalent 8 \ cm \ thickness the second of th$	k surfacee course material	
	$t_{base} = 11.18 \ cm = equivalent 8 \ cm \ thickness of base course to be provided = 49.33$	k surfacee course material	
		k surfacee course material	
		k surfacee course material	
	Actual thickness of base course to be provided = 49.	ek surfacee course material 2-11.18 = 38.02 cm	
		ek surfacee course material 2-11.18 = 38.02 cm	
	Actual thickness of base course to be provided = 49 8 cm thick surface course/10.86 cm	ek surfacee course material 2-11.18 = 38.02 cm a thick base course	
	Actual thickness of base course to be provided = 49.	ek surfacee course material 2-11.18 = 38.02 cm a thick base course	
	Actual thickness of base course to be provided = 49 8 cm thick surface course/10.86 cm	ek surfacee course material 2-11.18 = 38.02 cm a thick base course	
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade	ek surfacee course material 2-11.18 = 38.02 cm a thick base course	[no1
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade (a) A set of dual tires has a total load of 51 kN and a	ek surfacee course material 2-11.18 = 38.02 cm a thick base course al contact radius of 115 mm with a centre	[09]
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade (a) A set of dual tires has a total load of 51 kN and a to centre tyre spacing of 350 mm. Determine the	ek surfacee course material 2-11.18 = 38.02 cm a thick base course al contact radius of 115 mm with a centre ESWL by Foster and Boyd's method	[09]
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade (a) A set of dual tires has a total load of 51 kN and a to centre tyre spacing of 350 mm. Determine the and equivalent stress criterion for 340 mm paven	ek surfacee course material 2-11.18 = 38.02 cm a thick base course al contact radius of 115 mm with a centre ESWL by Foster and Boyd's method	[09]
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade (a) A set of dual tires has a total load of 51 kN and a to centre tyre spacing of 350 mm. Determine the and equivalent stress criterion for 340 mm paven Foster and Boyd method	ch surfacee course material 2-11.18 = 38.02 cm a thick base course al contact radius of 115 mm with a centre ESWL by Foster and Boyd's method nent.	[09]
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade (a) A set of dual tires has a total load of 51 kN and a to centre tyre spacing of 350 mm. Determine the and equivalent stress criterion for 340 mm paven Foster and Boyd method d=350-115×2= 120 mm; log (d/2) = 1.778; log (P)=	ch surfacee course material 2-11.18 = 38.02 cm a thick base course al contact radius of 115 mm with a centre ESWL by Foster and Boyd's method nent. 1.407	[09]
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade (a) A set of dual tires has a total load of 51 kN and a to centre tyre spacing of 350 mm. Determine the and equivalent stress criterion for 340 mm paven Foster and Boyd method d=350-115×2= 120 mm; log (d/2) = 1.778; log (P)= 2s = 700; log (2s) = 2.845; log (2P)= log (51)=1.708	ch surfacee course material 2-11.18 = 38.02 cm a thick base course al contact radius of 115 mm with a centre ESWL by Foster and Boyd's method nent. 1.407	[09]
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade (a) A set of dual tires has a total load of 51 kN and a to centre tyre spacing of 350 mm. Determine the and equivalent stress criterion for 340 mm paven Foster and Boyd method d=350-115×2= 120 mm; log (d/2) = 1.778; log (P)= 2s = 700; log (2s) = 2.845; log (2P)= log (51)=1.708 log(340)=2.531	ch surfacee course material 2-11.18 = 38.02 cm a thick base course al contact radius of 115 mm with a centre ESWL by Foster and Boyd's method nent. 1.407	[09]
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade (a) A set of dual tires has a total load of 51 kN and a to centre tyre spacing of 350 mm. Determine the and equivalent stress criterion for 340 mm paven Foster and Boyd method d=350-115×2= 120 mm; log (d/2) = 1.778; log (P)= 2s = 700; log (2s) = 2.845; log (2P)= log (51)=1.708 log(340)=2.531	ch surfacee course material 2-11.18 = 38.02 cm a thick base course al contact radius of 115 mm with a centre ESWL by Foster and Boyd's method nent. 1.407	[09]
3	8 cm thick surface course/10.86 cm 38.02 cm thick base course materi Infinite subgrade (a) A set of dual tires has a total load of 51 kN and a to centre tyre spacing of 350 mm. Determine the and equivalent stress criterion for 340 mm paven Foster and Boyd method d=350-115×2= 120 mm; log (d/2) = 1.778; log (P)= 2s = 700; log (2s) = 2.845; log (2P)= log (51)=1.708	ch surfacee course material 2-11.18 = 38.02 cm a thick base course al contact radius of 115 mm with a centre ESWL by Foster and Boyd's method nent. 1.407	[09]

Fanival	ant	atroca	criterion
Equiva	lent	201 622	CHICHION

	z/a=2.96				
	left wheel		Right wheel		
	r/a	σ/q	r/a	σ/q	Sum
1	0	0.15	3.04	0.03	0.18
2	1	0.12	2.04	0.06	0.18
3	1.52	0.08	1.52	0.08	0.16

$$\frac{P_s}{P_d} = \frac{\sigma_z/q_d}{\sigma_z/q_s}$$

$$or P_{ESWL} = \frac{0.18}{0.15} \times 25.5 = 30.6 \text{ kN}$$

[09]

(b) Calculate the design repetitions for 20 years period for various wheel loads equivalent to 22.68 kN using the following data on a four lane road:

49.90 Load in kN 22.68 27.22 36.29 40.82 54.43 Vol per day **30 25 20** 5 **15** Load in kN 27.22 36.29 49.9 22.68 40.82 54.43 30 25 15 5 Vol per day 20 1 **ELF** 1 2 8 16 64 128 219000 182500 146000 109500 ADT per year 36500 7300 Equivalent 365000 219000 1168000 1752000 2336000 934400 repetetions

(c) Plate bearing tests were conducted with a 75 cm diameter plate on soil subgrade and a granular base. The stress noticed, when the deflection was 0.25 cm on the subgrade soil was 0.075 MN/m². On the base course, the same plate yielded 0.25 cm deflection under a stress of 0.15 MN/m². Design the pavement for an allowable deflection of 0.5 cm under a load of 51 kN and a tyre pressure of 0.4MN/m².

Since the plate is rigid, it is assumed as a rigid pavement

6.77

million

Determination of E of subgrade

67744000

$$\Delta = \frac{1.18pa}{E_2} \times F$$

Assume F=1

Total

repetetions

$$2.5 = \frac{1.18 \times 0.075 \times 375}{E_2} \times 1$$

Or $E_2 = 13.275 MN/m^2$

Determination of E of Surface course

$$2.5 = \frac{1.18 \times 0.15 \times 375}{13.275} \times F$$

F=0.5

Assume h/a = 2

From the graph

E1/E2=3.5

Or E1=56.5 MN/m^2

Design of pavement thickness

p=P/A

Pressure exerted =
$$\frac{51 \times 10^3}{\pi/4 \times (2a)^2} = 0.4 \times 10^6$$

Or a= 0.201 m

$$5 = \frac{1.5 \times 0.4 \times 201}{13.275} \times F$$
Or F = 0.55
From the graph, h/a=1.8
Or h= 0.362 m

Signature of CI Signature of CCI Signature of HoD