USN					

Internal Assessment Test 1 – Aug. 2018

Sub:	Applied Hydrau	ulics				Sub Code:	17CV43	Branch:	CIVI	L	
Date:	06/03/19	Duration:	50	Sem/Sec:	IV A & B			OBE			
Attempt five full questions							MA	RKS	СО	RBT	
1	a) A uniform body of size 3m long 2m wide and 1 m deep floats in water. What is the weight of the body if depth of immersion is 0.8 m? b) A solid cylinder of diameter 4m has a height of 4 m. Find the meta-centric height of the cylinder when it is floating in water with its axis vertical. Specific gravity of cylinder = 0.6.								CO1	L2	
2	State Buckingham's pi theorem. The pressure difference Δp in a pipe of diameter D and length 1 due to turbulent flow depends on velocity V, viscosity μ, density ρ and roughness k. Using Buckingham's method, obtain an expression for Δp.							10	CO1	L3	
3	height in de	esigning float	ing bodies. W	oating bodies? E Vrite expression for geneous equation	for me	eta-centric hei	ght.	ntric	6 4	CO1	L2
4	What are the ty numbers.	pes of forces	acting in a r	noving fluid sys	tem?	Discuss vario	ous non-dimensi	onal	10	CO1	L2
5	Discuss experin	nental method	l of determini	ng meta-centric l	height				10	CO1	L3

CCI	CI
= 1. = = = = = = =	_ : : _ : : _ : : _ : : _ :

USN					

Internal Assessment Test 1 – Aug. 2018

	1		mema	Assessment	CSU	1 – Aug. 20	10	1	1		
Sub:	Applied Hydraulics					Sub Code:	17CV43	Branch:	CIV	IL	
Date:	06/03/19 Duration: 90 min's Max Marks: 50 Sem/Sec: IV A & B									OF	BE .
			Attempt fiv	ve full questions				М	ARKS	СО	RBT
1	 a) A uniform body of size 3m long 2m wide and 1 m deep floats in water. What is the weight of the body if depth of immersion is 0.8 m? b) A solid cylinder of diameter 4m has a height of 4 m. Find the meta-centric height of the cylinder when it is floating in water with its axis vertical. Specific gravity of cylinder = 0.6. 								CO1	L2	
2	State Buckingham's pi theorem. The pressure difference Δp in a pipe of diameter D and length 1 due to turbulent flow depends on velocity V, viscosity μ , density ρ and roughness k. Using Buckingham's method, obtain an expression for Δp .							10	CO1	L3	
3	a) With a sketch, explain stability of floating bodies? Explain the significance of metacentric height in designing floating bodies. Write expression for meta-centric height.b) What is meant by dimensionally homogeneous equation? Explain with an example.							6 4	CO1	L2	
4	What are the types of forces acting in a moving fluid system? Discuss various non-dimensional numbers.								CO1	L2	
5	Discuss experir	mental method	l of determini	ng meta-centric l	neight				10	CO1	L3
CCI								C	I		

Solution of IAT-1 Question paper:

- 1) Question 1
 - a) Dimention of the body = 3*2*1

Depth of immersion = 0.8 m

Principle of floatation:

Weight of the body = weight of water displaced

= sp. Weight of water * Volume of water displaced

$$=$$
 $gg * (3*2*0.8) = 1000*9.81*3*2*0.8 = 47088 N$

b) Principle of floatation: weight of the body = buoyant force

Or Weight of the body = weight of fluid displaced

Or $600 \times 9.81 \times \pi(4)^2/4 \times 4 = 1000 \times 9.81 \times \pi(4)^2/4 \times h.$ (let depth of

immersion is h m)

Or h = 2.4 m

Distance of centre of buoyancy (B) from base = 2.4/2 = 1.2 m

Distance of centre of gravity (G) from base = 4/2 = 2 m

Distance BG = 2-1.2 = 0.8 m

Metacentric height = GM = BM-BG = (Iyy/V') - $0.8 = [\pi(D)^4/64] / [\pi(4)^2/4 \times 2.4]$ - 0.8 = -0.3833m

2) Buckingham's pi theorem: If there are n variables (independent and dependent) in a physical phenomenon and these variables contain m fundamental dimensions (M,L,T) then the variables are arranged in (n-m) dimensionless terms called π -terms.

 Δp is a function of D, l, V, μ , ρ , k $\Delta p = f(D, l, V, \mu, \rho, k) \text{ or } f_1(\Delta p, D, l, V, \mu, \rho, k) = 0$...(i) Total number of variables, n = 7. Writing dimensions of each variable, Dimension of $\Delta p = \text{Dimension of pressure} = ML^{-1}T^{-2}$ D = L, l = L, $V = LT^{-1}$, $\mu = ML^{-1}T^{-1}$, $\rho = ML^{-3}$, k = L.. Number of fundamental dimensions, m = 3 Number of π-terms = n - m = 7 - 3 = 4. Now equation (i) can be grouped in 4 π -terms as $f_1(\pi_1, \pi_2, \pi_3, \pi_4) = 0$ Each π -term contains m + 1 or 3 + 1 = 4 variables. Out of four variables, three are repeating variables. Choosing D, V, ρ as the repeating variables, we have the four π -terms as $\pi_1 = D^{a_1} \cdot V^{b_1} \cdot \rho^{c_1} \cdot \Delta p$ $\pi_2 = D^{a_2} \cdot V^{b_2} \cdot \rho^{c_2} \cdot I$ $\pi_3 = D^{a_3} \cdot V^{b_3} \cdot \rho^{c_3} \cdot \mu$

$$\pi_1 = D^{a_1} \cdot V^{b_1} \cdot \rho^{c_1} \cdot \Delta p$$
 $\pi_2 = D^{a_2} \cdot V^{b_2} \cdot \rho^{c_2} \cdot l$
 $\pi_3 = D^{a_3} \cdot V^{b_3} \cdot \rho^{c_3} \cdot \mu$
 $\pi_4 = D^{a_4} \cdot V^{b_4} \cdot \rho^{c_4} \cdot k$

First π-term

Power of T.

$$\pi_1 = D^{a_1} \cdot V^{b_1} \cdot \rho^{c_1} \cdot \Delta p$$

Substituting dimensions on both sides,

$$M^0L^0T^0 = L^{a_1}$$
. $(LT^{-1})^{b_1}$. $(ML^{-3})^{c_1}$. $ML^{-1}T^{-2}$

Equating the powers of M, L, T on both sides,

Power of M. Power of L.

$$0 = c_1 + 1 \qquad \therefore \quad c_1 = -1$$

$$0 = a_1 + b_1 - 3c_1 - 1, c_1 = -1$$

$$0 = a_1 + b_1 - 3c_1 - 1, c_1 = -1$$

$$0 = -b_1 - 2, c_1 = -1$$

$$0 = -b_1 + 3c_1 + 1 = 2 - 3 + 1 = 0$$

$$b_1 = -2$$

$$b_2 = a_1 + b_2 - 3c_1 + 1 = 2 - 3 + 1 = 0$$

$$b_3 = a_1 + b_2 - 3c_1 - 1 = 0$$

Substituting the values of a_1 , b_1 and c_1 in π_1 ,

$$\pi_1 = D^0$$
 , V^{-2} , ρ^{-1} , $\Delta p = \frac{\Delta p}{\rho V^2}$

Second π-term

$$\pi_2 = D^{a_2} \cdot V^{b_2} \cdot \rho^{c_2} \cdot I$$

Substituting dimensions on both sides,

$$M^0L^0T^0 = L^{a_2} \cdot (LT^{-1})^{b_2} \cdot (ML^{-3})^{c_2} \cdot L$$

Equating powers of M, L, T on both sides,

Power of M,

$$0 = c_2$$
, $c_2 =$

Power of L, Power of T,

$$0 = a_2 - b_2 - 3c_2 + 1, \qquad \therefore \quad a_2 = b_2 + 3c_2 - 1 = -1$$

$$0 = -b_2, \qquad \therefore \quad b_2 = 0$$
Evalues of a. b.

Substituting the values of a_2 , b_2 , c_2 in π_2 ,

$$\pi_2 = D^{-1} \cdot V^0 \cdot \rho^0 \cdot l = \frac{l}{D}$$

 $\pi_3 = D^{a_3} \cdot V^{b_3} \cdot \rho^{c_3} \cdot \mu$

Third π-term

Substituting dimensions on both sides,

$$M^{0}T^{0}T^{0} = L^{a_{3}} \cdot (LT^{-1})^{b_{3}} \cdot (ML^{-3})^{c_{3}} \cdot ML^{-1}T^{-1}$$

Substituting dimensions on both $M^0L^0T^0 = L^{a_3}$. $(LT^{-1})^{b_3}$. (ML)Equating the powers of M, L, T on both sides, $0 = c_3 + 1, \qquad \therefore \quad c_3 = -1$ Power of M, $0 = a_3 + b_3 - 3c_3 - 1, \qquad \therefore \quad a_3 = -b_3 + 3c_3 + 1 = 1$ $\therefore \quad b_3 = -1$

$$c_3 = c_3 + 1$$
, $c_3 = c_3 = 1$

$$0 = a_3 + b_3 - 3c_3 - 1$$

$$a_3 = -b_3 + 3c_3 + 1 = 1 - 3 + 1 = -1$$

$$0 = -h = 1$$

Substituting the values of a_3 , b_3 and c_3 in π_3 ,

$$\pi_3 = D^{-1} \; , \; V^{-1} \; , \; \rho^{-1} \; , \; \mu = \frac{\mu}{DV\rho} \; .$$

Fourth π-term

$$\pi_4 = D^{a_4} \cdot V^{b_4} \cdot \rho^{c_4} \cdot k$$
 $M^0 L^0 T^0 = L^{a_4} \cdot (LT^{-1})^{b_4} \cdot (ML^{-3})^{c_4} \cdot L$

$$M^0L^0T^0 = L^{a_4} \cdot (LT^{-1})^{b_4} \cdot (ML^{-3})^{c_4} \cdot L$$

Equating the power of M, L, T on both sides,

Power of M.

$$0 = c_4$$
,

$$c_4 = 0$$

Power of L.

$$0 = a_4 - b_4 - 3c_4 + 1,$$

$$a_4 = b_4 + 3c_4 - 1 = -1$$

 $b_4 = 0$

Power of T.

$$0 = a_4 - b_4 - 3c_4 + 1$$
,
 $0 = -b_4$,

$$b_{i} = 0$$

Substituting the values of a_4 , b_4 , c_4 in π_4 ,

$$\pi_4 = D^{-1} \ , \ V^0 \ , \ \rho^0 \ , \ k = \frac{k}{D}$$

Substituting the values of π_1 , π_2 , π_3 and π_4 in (ii), we get

$$f_1\left(\frac{\Delta p}{\rho V^2}, \frac{l}{D}, \frac{\mu}{D V \rho}, \frac{k}{D}\right) = 0$$
 or $\frac{\Delta p}{\rho V^2} = \phi \left[\frac{l}{D}, \frac{\mu}{D V \rho}, \frac{k}{D}\right]$. Ans.

a) Stability of floating bodies: Comparison of M and G

Metacentric height is significant in deciding dimensions of a prototype so that it can be made stable while floating in water. We have to ensure that GM > 0.

Thus, Metacentric (GM) height is significant in stability analysis of a floating body like a ship.

a. GM >0 : Stable equilibrium

b. GM<0 : Unstable Equilibrium

c. GM=0 : Neutral equilibrium

Expression of metacentric height: $GM=BM-BG=(I_{yy}/V')-BG$ Where B is centre of buoyancy, G is centre of gravity and M is metacentre. I_{yy} is moment of inertia about YY axis and V' is volume of water displaced.

b) Dimensionally homogeneous equation: dimensions of each term in an equation are the same. The powers of fundamental dimensions on both the sides will be identical for a dim. homogeneous equation.

Dimension of L.H.S.
$$= V = \frac{L}{T} = LT^{-1}$$

$$= \sqrt{2gH} = \sqrt{\frac{L}{T^2} \times L} = \sqrt{\frac{L^2}{T^2}} = \frac{L}{T} = LT^{-1}$$
Dimension of L.H.S.
$$= Dimension of R.H.S. = LT^{-1}$$

$$\therefore \text{ Equation } V = \sqrt{2gH} \text{ is dimensionally homogeneous. So it can be used in any system of units.}$$

4. Forces in a moving fluid:

5. Experimental method:

Experimental method of determining metalenthic reight.

* Consider a ship floating in water.

* Let us be a movable weight placed centrally on the deck of the ship.

W= total wt. including us

(f ship)

* Initrally: ship in equilibrium.

| deck is hom'z.

* we moved transversely through a distance

in moved transversely through a operation of across deck, so that ship tilts their small angle B, and comes to rest in new position of equilibrium.

0 - measured uning long plumbline attached to centre of the deck.

* In new position, G' & B, (new Cos. e)
will be again in vertical line.

movement of no through or causes a parallel shift of total centre of granity or time (4 to G'. We will equate this moment with the moment caused by movement of

wx = W(G.G) $wx = W(Gm + an \theta)$

or GM = wn Wtano

of l= length of plumbline & d is the distance moved on by it on horizontal scale,

then, $\tan \theta = \frac{d}{d}$

Situation before tilt

Situation after tilt