

Internal Assessment Test 2 – April 2019

For Ruchyulation,
$$
2e\ln 3m
$$
:\n
$$
A = 8y
$$
\nSolved from -
\n
$$
\frac{9^{2}f}{1} = 1
$$
\n
$$
\frac{9^{2}f}{1} = \frac{9^{2}f}{1}
$$
\n
$$
\frac{9^{2}f}{1} = \frac{9^{2}f}{1}
$$
\n
$$
\frac{9^{2}f}{1} = \frac{9^{2}f}{1}
$$
\n
$$
\frac{1}{2}e + \left(\frac{9^{2}}{9}\right)^{2} = \frac{1}{2}e + \frac{1}{2}e
$$
\n
$$
\frac{1}{2}e + \left(\frac{9^{2}}{2}\right)^{2} = \frac{1}{2}e + \frac{1}{2}e
$$
\n
$$
\frac{1}{2}e + \left(\frac{1}{2}e\right)^{2} = -\frac{1}{2}e + \frac{1}{2}e
$$
\n
$$
\frac{1}{2}e + \frac{1}{2}e + \frac{1}{2}e
$$
\n
$$
\frac{1}{2}e + \frac{1}{2
$$

 $\overline{1}$.

 $(\begin{array}{ccc} \text{iii)} & \text{Equation: } & \frac{3}{2} & \text{y} \end{array}$ (for oxidangular = $\frac{3}{2} \times 0.7$
= 1.065 m

(1) steep slope Bed slope is steep when -> bottom slope s. > critical slope s. - yn < yc (applying chesnis et) $C \cdot D \cdot L$ Θ yc $N \cdot D - L$ $1y_{b}$ \sum_{s} (2) vitral slope \rightarrow yu = yc NOL=CDL $y_n = y_c$ $S_0 = S_c$ \rightarrow $\mathcal{Z}_{\mathbf{a}}$ (3) <u>mild</u> slope NDL \rightarrow yn >yc $77 +$ CDL y. \rightarrow $S_0 < S_0$ \overrightarrow{f} (4) Morizonital slope $\rightarrow y_{n}\rightarrow\infty$ $\int as.$ So \rightarrow $S_0 = 0$ $y_n = 00$ $CD1$ ye 550 (?) Havenuse slope $y_n = -ve \rightarrow$ ("imaginary) \rightarrow Channel Bottom Stope insead of falling 1190 existent. thanks.

 $2.$

(" gone 2 vanishes in case of utilical A2, A3 for advesse sloped channel.
M_{2,} M3 for horizontal channel. (: for horiz. channels, yn=00 &
advesse clannels, yn=1mag.) I was not y type & you comit be ared. (8) sonc I 2 3 me II ave backwater moins le

$$
\frac{4}{3} \times \frac{4
$$

 $\overline{3}$.

$$
\frac{M_{0.6} + p_{1.11} + p_{1.12} + p_{1.13} + p_{1.13
$$

4.

Gradually varied flow: derivation of dynamic eq GVF Assumptions! Bed slope of channel is small. steady flow, hence Q= court. Ω channel is psismatic => channel having some
Chezey's & Mannings sections along the
egn may be used tempts d is Widon
to calculate slope constant bottomslop (3) 4 Chezejs & Mannings egn may be nied
to calculate slope of energy line. 5 xoughness coefficient is independent of depth of flow and is constant theorytout channel seach considered. $\Rightarrow \begin{array}{l} \text{1} \cup \text{2} \\ \text{2} \cup \text{3} \\ \text{3} \cup \text{4} \end{array}$ (6) Energy correction factor $\alpha = 1$ 1 pressure dictribution in any vertical is hydrostatic. 主席の部 FW.

5.

H =
$$
\frac{v}{2q} + y + z
$$

\n
$$
W = \frac{a^{2}}{2qa^{2}} + y + z
$$
\n
$$
W = \frac{a^{2}}{2qa^{2}} + y + z
$$
\n
$$
W = \frac{a^{2}}{2qa^{2}} + y + z
$$
\n
$$
W = \frac{1}{2qa^{2}} + y + z
$$
\n
$$
W = \frac{1}{2qa^{2}} + y + z
$$
\n
$$
W = \frac{1}{2qa^{2}} - \frac{1}{2a}z
$$
\n
$$
W = \frac{1}{2qa^{2}} - \frac{1}{2qa^{2}} + \frac{1}{2a}z
$$
\n
$$
W = \frac{1}{2qa^{2}} - \frac{1}{2qa^{2}} + \frac{1}{2a}z
$$
\n
$$
W = \frac{1}{2qa^{2}} - \frac{1}{2qa^{2}} + \frac{1}{2a}z
$$
\n
$$
W = \frac{1}{2qa^{2}} - \frac{1}{2qa^{2}} + \frac{1}{2qa^{2}} + \frac{1}{2a}z
$$
\n
$$
W = \frac{1}{2qa^{2}} - \frac{1}{2qa^{2}} -
$$