USN					

Internal Assessment Test 2 – April 2019

Sub:	Applied Hydraulics					Sub Code:	17CV43	Branch:	CIVI	L		
Date:	16/04/	19 Dı	uration:	90 min's	Max Marks:	50	Sem/Sec:	IV A & B			OBE	
				Attempt five	ve full questions				М	ARKS	СО	RBT
1	a) Deriv	e expressio	n for crit	ical depth for	rectangular secti	on.				4	CO3	L2
	flow	_	1.2 m, ca	alculate: Spec	ngular channel o rific energy of flo					6		
2					litions (inequalit t exist and why?	ies) fo	or M2, C1 ar	nd S3 water sur	face	10	CO4	L3
3			•		n of a channel	? Der	ive the cond	itions for the 1	most	6	CO2,	L1
		mical rectar e specific er	_		c energy curve.					4	CO3	
4	length	١.		•	ection show that		•	•	•	5 5	CO2	L1,L2
	is 40		the most		H:2V and the slo limensions of the							
5	_	adually vari ns made for			pression for grac	lually	varied flow.	Also mention the	e	10	CO4	L1

 CCI	_CI
Solution:	

For Rectarqual seekion:

$$A = By$$

$$T = B$$

$$S^{2}T = 1$$

$$gA^{3} = 1$$

or

$$\frac{Q^{2}T}{gA^{3}} = 1$$
or

$$\frac{Q^{2}}{g(By)^{2}} = 1$$
or

$$\frac{Q^{2}}{g(By)^{2}} = 1$$
or

$$\frac{Q^{2}}{g(By)^{2}} = 1$$

$$\frac{Q^{2}}{g$$

1.

| 1-2m. |
$$q = \frac{8}{B}$$
 | $\frac{8}{8}$ | $\frac{9}{8}$ | $\frac{$

(iii)
$$\epsilon_{\text{min}} = \frac{3}{2} \text{ yr}$$
 (for creetangular section)
$$= \frac{3}{2} \times 0.71$$

$$= 1.065 \text{ m}$$

existent.

Slope -> NDL=ODL)

A2, A3 for adverse sloped channel.

M2, M3 for horizontal channel.

(... for horizontal channel.

(... for horizontale, yn=00 & adverse channels, yn=image)

... y > yc & yn comit be compared.

(... are D are backwater weres & zne D are drawdown curves.

Gradually varied flow;

derivation of dynamic eqt of GVF:
Assumptions!

① Bad slope of channel is small.
② steady flow, hence Q= const.
③ channel is prismatic => channel having some shape of various the eqt way be used seeing along its land on constant bottom stope of energy line.
⑤ roughness coefficient is independent of depth of flow and is constant known ghout channel heach considered.
⑥ Everagy correction factor $\alpha = 1$ => ideal fluid flow vertical is hydrostatic.

5.

