
1. Describe with neat diagram, the architecture of Cortex M3 Processor. 

 

The Cortex-M3 is a 32-bit microprocessor. It has a 32-bit data path, a 32-bit register 

bank, and 32-bit memory interfaces.The processor has a Harvard architecture.For 

complex applications that require more memory system features, the Cortex-M3 

processor has an optional Memory Protection Unit (MPU). The Cortex-M3 processor 

includes a number of fixed internal debugging components. These components provide 

debugging operation supports and features, such as breakpoints and watchpoints. The 

Cortex-M3 processor has registers R0 through R15. R0–R12 are 32-bit general-purpose 

registers for data operations. The Cortex-M3 contains two stack pointers (R13).  

 Main Stack Pointer (MSP): The default stack pointer, used by the operating 
system (OS) kernel  and exception handlers. 

 Process Stack Pointer (PSP): Used by user application code. 

R14: The Link Register, R15: The Program Counter 

The Cortex-M3 processor also has a number of special registers.  

 Program Status registers (PSRs) 

 Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI) 

 Control register (CONTROL) 

The Cortex-M3 processor has two modes and two privilege levels. The operation 

modes (thread mode and handler mode) determine whether the processor is running a 

normal program or running an exception handler like an interrupt handler or system 

exception handler. The privilege levels (privileged level and user level) provide a 

digitallib
Typewritten text
IAT - I Solution 15EC62 ARM microcontroller & EMBEDDED system March 2018 - Ms.Pushpa S



mechanism for safeguarding memory accesses to critical  regions as well as providing 

a basic security model. 

The Cortex-M3 processor includes an interrupt controller called the Nested Vectored 

Interrupt Controller (NVIC). It is closely coupled to the processor core and provides 

a number of features such as:  

 Nested interrupt support  

 Vectored interrupt support  

 Dynamic priority changes support  

 Reduction of interrupt latency   

 Interrupt masking 

The Cortex-M3 has a predefined memory map. This allows the built-in peripherals, 

such as the interrupt controller and the debug components, to be accessed by simple 

memory access instructions. Thus, most system features are accessible in C program 
code. The predefined memory map also allows the Cortex-M3 processor to be highly 

optimized for speed and ease of integration in system-on-a-chip  (SoC) designs. 

There are several bus interfaces on the Cortex-M3 processor. They allow the Cortex-

M3 to carry instruction fetches and data accesses at the same time. The main bus 

interfaces are as follows:  

 Code memory buses 

 System bus   

 Private peripheral bus 

The Cortex-M3 supports the Thumb-2 instruction set. This is one of the most 

important features of the Cortex-M3 processor because it allows 32-bit instructions and 
16-bit instructions to be used together for high code density and high efficiency. It is 

flexible and powerful yet easy to use. 

2. Write short notes on Exceptions, Interrupts and Vector Table.   

The Cortex-M3 supports a number of exceptions, including a fixed number of system 
exceptions and a number of interrupts, commonly called IRQ. The number of interrupt 

inputs on a Cortex-M3 microcontroller depends on the individual design. Interrupts 

generated by peripherals, except System Tick Timer, are also connected to the 

interrupt input signals. The typical number of interrupt inputs is 16 or 32. Besides the 

interrupt inputs, there is also a nonmaskable interrupt (NMI) input signal. The actual  

use of NMI depends on the design of the microcontroller or system-on-chip (SoC) 

product you use. In most cases, the NMI could be connected to a watchdog timer or 

a voltage-monitoring block that warns  the processor when the voltage drops below a 

certain level. The NMI exception can be activated any time, even right after the core 

exits reset. 

Vector Table: When an exception event takes place on the Cortex-M3 and is accepted 

by the processor core, the corresponding exception handler is executed. To determine 
the starting address of the exception handler, a vector table mechanism is used. The 

vector table is an array of word data inside the system memory, each representing the 

starting address of one exception type. The vector table is relocatable, and the 

relocation is controlled by a relocation register in the NVIC.  



After reset, this relocation control register is reset to 0; therefore, the vector table is 

located in address 0x0 after reset. The LSB of each exception vector indicates whether 

the exception is to be executed in the Thumbstate. Because the Cortex-M3 can 

support only Thumb instructions, the LSB of all the exception vectors should be set 

to 1. 

 

3a. Explain the operating modes of Cortex M3 with the help of neat diagrams indicating 

the switching of states on the occurrence of exceptions. 

 

The Cortex-M3 processor supports two modes and two privilege levels: When the 

processor is running in thread mode, it can be in either the privileged or user level, 

but  handlers can only be in the privileged level. When the processor exits reset, it is 
in thread mode, with privileged access rights. In the user access level (thread mode), 

access to the system control space (SCS)—a part of the memory region for 

configuration registers and debugging components—is blocked. Furthermore, instructions 

that access special registers (such as MSR, except when accessing APSR) cannot be 



used. If a program running at the user access level tries to access SCS or special 

registers, a fault exception will occur. Software in a privileged access level can switch 

the program into the user access level using the control register. When an exception 

takes place, the processor will always switch to a privileged state and return to the 

previous state when exiting the exception handler. A user program cannot change 

back to the privileged state directly by writing to the control register. It has to go 
through an exception handler that programs the control register to switch the 

processor back into privileged access level when returning to thread mode. 

                                             

3b. List the applications of Cortex M3  

With its high performance and high code density and small silicon footprint, the 

Cortex-M3 processor is ideal for a wide variety of applications:  

 Low-cost microcontrollers: The Cortex-M3 processor is ideally suited for low-
cost microcontrollers, which are commonly used in consumer products, from 

toys to electrical appliances. It is a highly competitive market due to the many 

well-known 8-bit and 16-bit microcontroller products on the market. Its lower 

power, high performance, and ease-of-use advantages enable embedded 

developers to migrate to 32-bit systems and develop products with the ARM 

architecture.  

 Automotive: Another ideal application for the Cortex-M3 processor is in the 

automotive industry. The Cortex-M3 processor has very high-performance 

efficiency and low interrupt latency, allowing it to be used in real-time 

systems. The Cortex-M3 processor supports up to 240 external vectored 

interrupts, with a built-in interrupt controller with nested interrupt supports and 
an optional MPU, making it ideal for highly integrated and cost-sensitive 

automotive applications.  

 Data communications: The processor’s low power and high efficiency, coupled 

with instructions  in Thumb-2  for  bit-field  manipulation,  make  the  Cortex-
M3  ideal  for  many  communications  applications, such as Bluetooth and 

ZigBee.  

 Industrial control: In industrial control applications, simplicity, fast response, 

and reliability are key factors. Again, the Cortex-M3 processor’s interrupt 

feature, low interrupt latency, and enhanced fault-handling features make it a 
strong candidate in this area.  

 Consumerproducts: In many consumer products, a high-performance 

microprocessor (or several of them) is used. The Cortex-M3 processor, being a 

small processor, is highly efficient and low in power and supports an MPU 
enabling complex software to execute while providing robust memory 

protection. 



4a. Explain the Program Status registers with bit pattern. 

The PSRs are subdivided into three status registers:  

 Application Program Status register (APSR)  

 Interrupt Program Status register (IPSR)    

 Execution Program Status register (EPSR) 

The three PSRs can be accessed together or separately using the special register 

access instructions MSR and MRS. When they are accessed as a collective item, 

the name xPSR is used. You can read the PSRs using the MRS instruction. You 

can also change the APSR using the MSR instruction, but EPSR and IPSR are 

read-only. 

 

Bit Description 

 N - Negative  

 Z - Zero  

 C -  Carry/borrow  

 V - Overflow  

 Q -  Sticky saturation flag  

 ICI/IT - Interrupt-Continuable Instruction (ICI) bits, IF-THEN instruction status 
bit. 

 T - Thumb state, always 1; trying to clear this bit will cause a fault exception 

Exception number Indicates which exception the processor is handling. 

4b. Explain Thumb2 technology. 

The Thumb-2 technology extended the Thumb Instruction Set Architecture (ISA) into 

a highly efficient and powerful instruction set that delivers significant benefits in 

terms of ease of use, code size, and performance. The extended instruction set in 

Thumb-2 is a superset of the previous 16-bit Thumb instruction set, with additional 

16-bit instructions alongside 32-bit instructions.It allows more complex operations to be 

carried out in the Thumb state, thus allowing higher efficiency by reducing the 

number of states switching between ARM state and Thumb state.Focused on small 

memory system devices such as microcontrollers and reducing the size of the 

processor, the Cortex-M3 supports only the Thumb-2 (and traditional Thumb) 

instruction set.Instead of using ARM instructions for some operations, as in traditional 
ARM processors, it uses the Thumb-2 instruction set for all operations. As a result, 

the Cortex-M3 processor is not backward compatible with traditional ARM processors. 

With support for both 16-bit and 32-bit instructions in the Thumb-2 instruction set, 

there is no need to switch the processor between Thumb state (16-bit instructions) 

and ARM state (32-bit instructions). For example, in ARM7 or ARM9 family 

processors, you might need to switch to ARM state if you want to carry out complex 

calculations or a large number of conditional operations and good performance is  

needed, whereas in the Cortex-M3 processor, you can mix 32-bit instructions with 16-



bit instructions without switching state, getting high code density and high performance 

with no extra complexity.The Thumb-2 instruction set is a very important feature of 

the ARMv7 architecture.  

                                                    

5a. Explain the 2-level Stack model in Cortex M3. 

The Cortex-M3 has two SPs: the MSPS and the PSP. The SP register to be used is 

controlled by the control register bit 1 (CONTROL[1].When CONTROL[1] is 0, the 
MSP is used for both thread mode and handler mode. In this arrangement, the main 

program and the exception handlers share the same stack memory region.  This is the 

default setting after power-up.  

When the CONTROL[1] is 1, the PSP is used in thread mode. In this arrangement, 

the main program and the exception handler can have separate stack memory regions. 

This can prevent a stack error in a user application from damaging the stack used by 

the OS. Note that in this situation, the automatic stacking and unstacking mechanism 

will use PSP, whereas stack operations inside the handler will use MSP. It is possible 

to perform read/write operations directly to the MSP and PSP, without any confusion 

of which R13 you are referring to. 

                              

                       CONTROL[1]=0: Both Thread Level and Handler Use Main Stack. 



                            

          CONTROL[1]=1: Thread Level Uses Process Stack and Handler Uses Main Stack. 

5b What is Stack? Explain the multiple register Stack operation. 

 

6a  Explain the reset sequence with the help of memory map. 

After the processor exits reset, it will read two words from memory:  

 Address 0x00000000: Starting value of R13 (the SP). 

 Address 0x00000004: Reset vector (the starting address of program execution; 

LSB should be set to 1 to indicate Thumb state). 

This differs from traditional ARM processor behavior. Previous ARM processors 

executed program code starting from address 0x0. Furthermore, the vector table in 

previous ARM devices was instructions (you have to put a branch instruction 

there so that your exception handler can be put in another location). In the 
Cortex-M3, the initial value for the MSP is put at the beginning of the memory 

map, followed by the vector table, which contains vector address values.(The 

vector table can be relocated to another location later, during program execution.) 

In addition, the contents of the vector table are address valuesnot branch 

instructions. The first vector in the vector table (exception type 1) is the reset 

vector, which is the second piece of data fetched by the processor after reset. 

                   



                                   

 

6b. Explain the Control register . 

The control register is used to define the privilege level and the SP selection. 

This register has 2 bits. 

CONTROL[1]:In the Cortex-M3, the CONTROL[1] bit is always 0 in handler 

mode. However, in the thread or base level, it can be either 0 or 1.This bit is 

writable only when the core is in thread mode and privileged. In the user state or 

handler mode, writing to this bit is not allowed. Aside from writing to this 

register, another way to change this bit is to change bit 2 of the LR when in 

exception return. 

CONTROL[0]: The CONTROL[0] bit is writable only in a privileged state. Once 

it enters the user state, the only way to switch back to privileged is to trigger an 

interrupt and change this in the exception handler. 

To access the control register in assembly, the MRS and MSR instructions are 

used: 

MRS   r0, CONTROL ; Read CONTROL register into R0  

MSR   CONTROL, r0 ; Write R0 into CONTROL register 

To access the control register in C, the following CMSIS functions are available 

in CMSIS compliant device driver libraries: 

x = __get_CONTROL(); // Read the current value of CONTROL  



__set_CONTROL(x); // Set the CONTROL value to x 


