TICNI					
USIN					

INTERNAL ASSESSMENT TEST – I

Sub:	DIGITAL COMMUNICATION							Code:	15EC61
Date:	12/03/2018	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE,TCE

Answer any 5 full questions

	Marks	CO	RBT
1. Define Hilbert transform. Plot the magnitude response and phase response of an ideal Hilbert transformer. Derive the impulse response of the ideal Hilbert transformer.		CO1	L3
2(a). State and prove the properties of ideal Hilbert transformer.	[06]	CO1	L2
2(b) Determine the Hilbert transform of $m(t)\cos(2\pi f_c t)$ assuming that $m(t)$ is low pass signal bandlimited to W Hz and $f_c \gg W$.	a [04]	CO1	L2
3(a) Determine the Hilbert transform of the signal $x(t)$ where $x(t) = \begin{cases} A & for -\frac{T_b}{2} \le t \le \frac{T_b}{2} \\ 0 & otherwise \end{cases}$	[05]	CO1	L2
3(b) Determine the Hilbert transform of $x(t) = sinc(t)$.	[05]	CO1	L2
Discuss pre-envelope with positive frequencies and complex envelope of bandpass signals with relevant equations and waveforms. Determine the pre-envelope and complex envelope of $x(t) = sinc(t)$.		CO1	L2
Derive an expression for the canonical representation of bandpass signal Obtain a scheme for extracting in-phase and quadrature components obandpass signals.		CO1	L2
6(a) For the binary data "101101" plot the following waveforms.	[06]	CO1	L2
i) NRZ Unipolar ii) NRZ Polar iii) RZ Polar iv) RZ Unipolar v) NRZ Bipolar vi) Manchester			
6(b) Perform differential encoding on the binary data "101101". Show the original binary data can be decoded even in the presence of polarity inversion		CO1	L2
Derive an expression for power spectral density of NRZ bipolar forms assuming equiprobable and statistically independent 0s and 1s. Plot the resulting power spectral density.		CO1	L3

1) When the frequency components are phase shifted by -90° and -ve frequency components are phase shifted by 90° , the responents are phase shifted by 90° , the resulting time domain signal is called HT of the signal

h (t) = ##

(6)

(2)

2a) i)
$$H(f) = -j sgn(f)$$

$$\hat{X}(f) = X(f)H(f)$$

$$= |\hat{\chi}(f)| = |\chi(f)(-jsgn(f))|$$

(i)
$$\hat{x}(t) = \hat{x}(t) \left(-j sgn(t)\right)$$

$$\hat{x}(f) = x(f)(-jsgn(f))(-jsgn(f))$$

$$= -X(f)$$

$$X(f) = \frac{1}{2}M(f-f_c) + \frac{1}{2}M(f+f_c)$$

$$\hat{x}(f) = \frac{1}{2} M(f-f_c)(-j) + \frac{1}{2} M(f+f_c)(j)$$

$$\alpha'(t) = m(t) \sin(2\pi f_c t)$$

3a.
$$\hat{\chi}(t) = \int_{0}^{\frac{1}{2}} A dt$$

$$\hat{\chi}(t) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} A \frac{1}{\pi(4-\tau)} d\tau$$

$$=\frac{A}{T}\left[\frac{-1}{-1}\ln\left(\frac{1-\tau}{1-\tau}\right)\right]^{\frac{T_{b}}{2}}$$

$$= -\frac{A}{\pi} \ln \left(\frac{1 - \frac{T_b}{2}}{1 + \frac{T_b}{2}} \right)$$

$$3b \times (f) = \int_{0}^{1} -\frac{1}{2} \leq f \leq \frac{1}{2}$$
other wise

(1)

$$\hat{x}(f) = \begin{cases} j & -\frac{1}{2} \leq f < 0 \\ 0 & f = 0 \end{cases}$$

$$\begin{cases} -\frac{1}{2} \leq f < 0 \\ 0 & c \neq 0 \end{cases}$$

$$\begin{cases} -\frac{1}{2} \leq f < 0 \\ 0 & c \neq 0 \end{cases}$$

$$\begin{cases} -\frac{1}{2} \leq f < 0 \\ 0 & c \neq 0 \end{cases}$$

$$\hat{\chi}(t) = IFT of \hat{\chi}(f)$$

$$= \frac{1 - \cos(\pi t)}{\pi t}$$
(2)

$$\chi_{+}(f) = \chi(f) + j \hat{\chi}(f)$$

$$\chi_{+}(f) = \chi(f) + j \hat{\chi}(f)$$

$$= \times (f) + j \left(-j \operatorname{sgn}(f) \times (f)\right)$$

$$= \times (f) + \operatorname{sgn}(f) \times (f)$$

$$= \int_{-\infty}^{\infty} 2 \times (f) \quad for \quad f > 0$$

$$= \int_{-\infty}^{\infty} x(0) \quad for \quad f = 0$$

$$= \int_{-\infty}^{\infty} 0 \quad for \quad f = 0$$

$$\hat{X}(f) = X_{+}(f+f_{c})$$

$$x(t) = Sinc(t)$$

$$\chi(t) = \frac{1-\cos(\pi t)}{\pi t}$$

$$\frac{1-\cos(\pi t)}{\pi t} + \frac{1-\cos(\pi t)}{\pi t}$$

$$= \frac{\sin(\pi t) + j - j\cos(\pi t)}{\pi t}$$

$$= -j \left(\cos\left(\pi t\right) + j \sin\left(\pi t\right)\right) + j$$

$$\widehat{\pi}(t) = \pi_{+}(t) e^{j2\pi f_{+}t}.$$

$$\Re(t) = \pi_{+}(t) \cos(2\pi f_{+}t) - \pi_{+}(t) \sin(2\pi f_{+}t)$$

$$\Re(t) \cos(2\pi f_{+}t) = \pi_{+}(t) \cos^{2}(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\Re(t) \sin(2\pi f_{+}t) = \Re_{+}(t) \frac{1}{2} \sin(4\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\Re(t) \sin(2\pi f_{+}t) = \Re_{+}(t) \frac{1}{2} \sin(4\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) (2)$$

$$\Re(t) = \pi_{+}(t) e^{j2\pi f_{+}t}.$$

$$\Re(t) \sin(2\pi f_{+}t) = \pi_{+}(t) \sin(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\Re(t) \sin(2\pi f_{+}t) = \Re_{+}(t) \frac{1}{2} \sin(4\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) \cos(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) - \Re_{+}(t) \sin(2\pi f_{+}t)$$

$$\sin^{2}(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t)$$

$$\Re_{+}(t) \sin(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t)$$

$$\Re_{+}(t) \sin(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t) \cos(2\pi f_{+}t)$$

$$\Re_{+}(t) \sin(2\pi f_{+}t) \cos(2\pi f_{+}t$$

7. NRZ Bipolar format

$$V(f) = T_b sinc(fT_b)$$
 (2)

$$R_{A}(n) = \begin{cases} \frac{a^{2}}{2}, & n = 0 \\ -a^{2}, & n = \pm 1 \\ 0, & \text{otherwise} \end{cases}$$
 (3)

$$S(f) = \frac{1}{7b} |V(f)|^2 \stackrel{\text{def}}{=} R_A(n) = \frac{1}{7b} |V(f)|^2 = \frac{1}{7b} |V(f)|^2$$

=
$$T_b \sin^2(f_b) = \frac{a^2}{2} \left[1 - \cos(2\pi f_b) \right]$$

+