
CMR
INSTITUTE OF
TECHNOLOGY

USN

 Sub: MICROPROCESSORS
Date: 12/03 / 2018 Duration:

1. Describe with neat diagram, the internal architecture of 8086 microprocessor

Page 1 of 8

Internal Assesment Test-I

 90 mins Max Marks: 50 Sem: 4th
Answer FIVE FULL Questions

with neat diagram, the internal architecture of 8086 microprocessor

Code: 15EC42
Branch: ECE(A,B)

Marks
OBE

CO RBT
with neat diagram, the internal architecture of 8086 microprocessor. [4+3+3] CO1 L1

Page 2 of 8

Page 3 of 8

Page 4 of 8

2.(a) Briefly describe the memory segmentation of 8086.

[02+04] CO1 L1

(b) If CS = 1000 H, DS = 25A0H, SS = 32

3400H, find the physical address of the source data for the following instructio
(i) MOV AL, [BX+ 1200H]
(ii) ADD BL, [BP+05]

3. Describe briefly any 5 data addressing mo

Page 5 of 8

SS = 3210H, ES = 5890H, BX = 43A9H, BP
physical address of the source data for the following instructio

ddressing modes of 8086 with an example for ea

BX = 43A9H, BP =
physical address of the source data for the following instructions:

[02+02] CO1 L3

ach. [02*05] CO1 L1

Page 6 of 8

Page 7 of 8

4. Describe the flag register structure of 8086 with a neat diagram. [2+8]

Page 8 of 8

Page 1 of 6

5. Describe the following instructions with example. i) AAD ii) LEA iii) IDIV
iv) SAR.

i)AAD - ASCII adjust before Division
The AAD instruction converts two unpacked BCD digits in AH and AL to the
equivalent binary number in AL. This adjustment must be made before division.
Example:
 MOV AH, ‘6’ ; AH=36
 MOV AL, ‘2’ ; AL=32
 MOV BL,’8’ ; BL=38
 SUB AX,3030H ;AX=0602
 SUB BL,30H ; BL=8
 AAD ; AX=003EH
 DIV BL ;AX=0607

ii) LEA
Syntax: LEA Destination, Source
The LEA instruction Loads the offset (effective) address of source operand into
specified destination register.
Ex: LEA BX,ARRAY ; BXOffset address of ARRAY is loaded into
 ; destination register BX

iii) IDIV
Syntax: IDIV SOURCE

 It divides a signed word or double word by a signed byte or word operand
respectively.

 The source Operand can be a general purpose register or memory.
Cannot be a constant or immediate data.

 CF,OF,SF, ZF, AF, PF are unpredictable
Example: 16-bit division:
 Let DX=0000h, AX=0005h, and BX=FFFEh
 IDIV BX; AX=FFFE DX=0001

iv) SAR.
SAR Dest, Count

 SAR instruction shifts the contents of destination operand
(register/memory location) to the right either one or count specified in CL
register.

 As a bit is shifted out of the MSB position, a copy of the old MSB is put
in the MSB position.

 The LSB bit is shifted to the carry flag.
 This instruction preserves the sign of the number.

Example:
MOV DL,80H ; DL=80H
MOV CL, 04H ;CL=04h
SAR DL, CL ;DL=F8H

[3+2
+3+2]

CO2 L1

Page 2 of 6

7. (a) Write an ALP to copy a block of 10 data bytes from location SRC to location
 DST in memory.

 .model small
 .data
src db 20h,21h,22h,23h,24h,25h,26h,27h,28h,29h
count equ $-src
dst db count dup (00)
 .code
 mov ax,@data
 mov ds,ax
 mov cx,count
 lea si,src
 lea di,dst
back:mov al, [si]
 mov [di], al
 inc si
 inc di
 loop back
 mov ah,4ch
 int 21h
 end

[06] CO2 L3

(b) Write an ALP to multiply two signed bytes data and store the result in memory.

 .model small
 .data
num1 db 0FEH
num2 db 0FEH
res dw 00h

 .code
 mov ax,@data
 mov ds,ax
 mov al, num1
 imul num2
 mov res,ax

 mov ah,4ch
 int 21h
 end

RESULT: 0004H

[04] CO2 L3

8.(a)

Correct the following instructions if any mistake, and explain the operations
performed by each of them:

i. ADD [5000H], 0100H
 Instruction is correct.

[10] CO2 L3

Page 3 of 6

 Here an immediate data 0100H is copied to the memory location in data
 segment whose Offset address is 5000H.
 DS:[5000H]0100H

ii. INC [BX]

Instruction is correct.
This instruction increases the contents of the memory location pointed by
BX by 1.

iii. NOT 34H
Instruction is wrong.
NOT instruction cannot work on immediate data.
This instruction complements (inverts) the contents of register or memory
location.
SO take 34H into 8-bit general purpose register or into memory location
and the use NOT.
MOV AL,34H
NOT AL

iv. DAA
Instruction is correct.
Working of DAA Instruction:

 If after an ADD or ADC instruction the lower nibble of AL is greater than
9, or if AF = 1, DAA instruction adds 06 to the lower nibble of AL.

 After adding 06, If the upper nibble of AL is greater than 9, or if CF = 1,
DAA instruction adds 6 to the upper nibble of AL.
For example, adding 29H and 18H will result in 41 H, which is incorrect
as far as BCD is concerned.
 Hex BCD
 29 0010 1001
+ 18 +0001 1000
 41 0100 0001 AF = 1
+ 6 + 0110 because AF =1 DAA will add 6 to lower
nibble 47 0100 0111 The final result is BCD

v. JNC Label
Instruction is correct.
It is a conditional branch instruction.
This instruction examines the Carry Flag (CF), if it is set as a result of
previous operation then execution control is transferred to the address
specified by the ‘Label’ in the instruction.

Page 4 of 6

6.(a) Differentiate between the following instructions: [2*3]
i. SUB & CMP

SUB(Subtract) CMP(Compare)
SUB instruction subtracts the source operand from
the destination operand and the result is stored in
destination operand.

It performs comparison by subtracting the source
operand from destination operand but does not
store the result anywhere.

Source operand may be a register, memory
location or immediate data.
Destination operand may be a register or memory
location.

Source operand may be a register, memory
location or immediate data.
Destination operand may be a register or memory
location.

All the status flags will be affected by this
instruction

The flags are affected depending upon the result of
subtraction.

ii. SHIFT & ROTATE

SHIFT ROTATE

Shift instruction bit-wise shifts the contents of a
destination operand which could be in register or
memory location to right or left.

Rotation instructions bit-wise rotates the contents
of destination operand (register/memory location)
 to the right or left either one or count specified in
CL register .

There are two kinds of shifts: Logical and
Arithmetic
The logical shift is for unsigned operands (SHL,
SHR), Here the shifted position is inserted with
logical ‘0’.
and
The arithmetic shift (SAR) is for signed operands.
This instruction preserves the sign of the number.

The rotation instructions are of two types one is
simple rotation of the bits of the operand. ROR,
ROL.
And other is a rotation through carry. RCR, RCL.

iii. CALL & JMP

Page 5 of 6

6.(b) [1*4]
(i)

(ii)

(iii)

(iv)

Page 6 of 6

